
Getting
Started with
Advanced C#

Upgrade Your Programming Skills
—
Vaskaran Sarcar
Foreword by Deepak Seshadri

Getting Started with
Advanced C#

Upgrade Your Programming Skills

Vaskaran Sarcar

Foreword by Deepak Seshadri

Getting Started with Advanced C#: Upgrade Your Programming Skills

ISBN-13 (pbk): 978-1-4842-5933-7			 ISBN-13 (electronic): 978-1-4842-5934-4
https://doi.org/10.1007/978-1-4842-5934-4

Copyright © 2020 by Vaskaran Sarcar

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not
identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Smriti Srivastava
Development Editor: Laura Berendson
Coordinating Editor: Shrikant Vishwakarma

Cover designed by eStudioCalamar

Cover image designed by Freepik (www.freepik.com)

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233 Spring Street,
6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-
sbm.com, or visit www.springeronline.com. Apress Media, LLC is a California LLC and the sole member
(owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a
Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit http://www.apress.com/
rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and
licenses are also available for most titles. For more information, reference our Print and eBook Bulk Sales
web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to
readers on GitHub via the book’s product page, located at www.apress.com/978-1-4842-5933-7. For more
detailed information, please visit http://www.apress.com/source-code.

Printed on acid-free paper

Vaskaran Sarcar
Kolkata, West Bengal, India

https://doi.org/10.1007/978-1-4842-5934-4

This book is dedicated to those people who can listen
to their inner voices and have the courage to follow their dreams

despite unfavorable circumstances.

v

Part I: Getting Familiar with Building Blocks��� 1

Chapter 1: �Delegates��� 3

Definition�� 5

Demonstration 1��� 5

Q&A Session��� 10

Comparing a Static Method with an Instance Method��� 11

Demonstration 2��� 12

Using Multicast Delegates��� 14

Demonstration 3��� 15

Q&A Session��� 17

Demonstration 4��� 17

Q&A Session��� 19

Demonstration 5��� 21

Q&A Session��� 22

Variance in Delegates�� 24

Covariance in Delegates��� 25

Demonstration 6��� 26

Contravariance in Delegates��� 28

Table of Contents

About the Author�� xiii

About the Technical Reviewer��xv

Acknowledgments��xvii

Foreword���xix

Introduction���xxi

vi

Demonstration 7��� 28

Q&A Session��� 30

Final Words�� 31

Summary��� 31

Chapter 2: �Events�� 33

Demonstration 1�� 35

Output��� 38

Analysis�� 38

Q&A Session��� 38

Creating Custom Events��� 39

Demonstration 2��� 40

Passing Data to an Event Argument��� 43

Demonstration 3��� 43

Using Event Accessors��� 46

Demonstration 4��� 48

Q&A Session��� 52

Handling Interface Events�� 53

Demonstration 5��� 53

Q&A Session��� 55

Handling Explicit Interface Events��� 55

Demonstration 6��� 56

Q&A Session��� 60

Demonstration 7��� 61

Q&A Session��� 64

Demonstration 8��� 65

Final Words�� 67

Summary��� 69

Table of Contents

vii

Chapter 3: �Lambda Expressions�� 71

The Usefulness of Lambda Expressions�� 71

Demonstration 1��� 72

Lambda Expression with (and Without) Parameters�� 76

Demonstration 2��� 76

Types of Lambda Expressions�� 78

Expression-Bodied Members��� 78

Demonstration 3��� 80

Demonstration 4��� 82

Local Variables in a Lambda Expression�� 85

Demonstration 5��� 86

Using Tuples in a Lambda Expression�� 88

Demonstration 6��� 89

Event Subscription with Lambda Expressions��� 91

Demonstration 7��� 91

Q&A Session��� 94

Final Words�� 99

Summary��� 99

Part II: Exploring Advanced Programming��� 101

Chapter 4: �Generic Programming�� 103

The Motivation Behind Generics�� 103

Demonstration 1��� 104

Demonstration 2��� 107

Demonstration 3��� 110

A Quick Look into the List Class��� 112

Demonstration 4��� 113

Generic Delegates�� 114

Func Delegate�� 114

Q&A Session��� 116

Action Delegate�� 117

Table of Contents

viii

Predicate Delegate��� 118

Demonstration 5��� 118

Q&A Session��� 120

The Default Keyword in Generics��� 122

Demonstration 6��� 122

Q&A Session��� 124

Implementing Generic Interface��� 125

Demonstration 7��� 125

Q&A Session��� 128

Generic Constraints�� 129

Demonstration 8��� 130

Q&A Session��� 133

Using Covariance and Contravariance��� 135

Q&A Session��� 137

Covariance with Generic Delegate��� 138

Demonstration 9��� 139

Covariance with Generic Interfaces��� 141

Demonstration 10��� 141

Contravariance with Generic Delegates��� 144

Demonstration 11��� 145

Contravariance with Generic Interface��� 147

Partial Implementation��� 148

Q&A Session��� 148

Demonstration 12��� 149

Q&A Session��� 151

Demonstration 13��� 152

Self-Referencing Generic Types��� 154

Demonstration 14��� 155

Q&A Session��� 158

Demonstration 15��� 159

Q&A Session��� 161

Table of Contents

ix

Final Words�� 162

Summary��� 162

Chapter 5: �Thread Programming��� 163

Foundations in Thread Programming��� 163

Q&A Session��� 166

Coding Multithreaded Programs in C#��� 166

Using the ThreadStart Delegate��� 168

Demonstration 1��� 170

Demonstration 2��� 174

Q&A Session��� 178

Using the ParameterizedThreadStart Delegate�� 179

Demonstration 3��� 179

Q&A Session��� 183

Demonstration 4��� 184

Q&A Session��� 190

Demonstration 5��� 190

Q&A Session��� 192

Demonstration 6��� 193

Q&A Session��� 195

Foreground Thread vs. Background Thread��� 196

Demonstration 7��� 197

Thread Safety��� 200

A Non-Synchronized Version�� 200

Demonstration 8��� 201

A Synchronized Version�� 203

Demonstration 9��� 203

An Alternative Approach Using the Monitor Class�� 205

Deadlock�� 207

Types of Deadlock�� 208

Demonstration 10��� 208

Investigating the Deadlocked State in Visual Studio�� 211

Table of Contents

x

Final Words�� 214

Summary��� 216

Chapter 6: �Asynchronous Programming�� 217

Overview�� 217

Using a Synchronous Approach��� 219

Demonstration 1��� 219

Using Thread Class�� 220

Demonstration 2��� 221

Q&A Session��� 223

Using the ThreadPool Class�� 223

Demonstration 3��� 225

Q&A Session��� 229

Using Lambda Expressions with ThreadPool��� 229

Demonstration 4��� 230

Using the IAsyncResult Pattern�� 233

Polling Using Asynchronous Delegates�� 233

Demonstration 5��� 233

Q&A Session��� 237

Using the AsyncWaitHandle Property of IAsyncResult�� 238

Demonstration 6��� 239

Using Asynchronous Callback�� 242

Demonstration 7��� 243

Q&A Session��� 246

Using an Event-based Asynchronous Pattern (EAP)��� 249

Demonstration 8��� 250

Q&A Session��� 257

Understanding Tasks�� 258

Demonstration 9��� 260

Using a Task-based Asynchronous Pattern (TAP)��� 262

Demonstration 10��� 262

Demonstration 11��� 264

Table of Contents

xi

Q&A Session��� 269

Using the async and await Keywords��� 270

Demonstration 12��� 272

Demonstration 13��� 277

Final Words�� 281

Summary��� 281

Chapter 7: �Database Programming��� 283

Database and DBMS�� 284

Types of DBMS��� 285

RDBMS��� 285

SQL��� 286

A Brief Discussion of ADO.NET��� 290

Understanding the Code�� 291

MySqlConnection�� 293

MySqlCommand��� 294

MySqlDataReader��� 296

Implementing Connection-Oriented Architecture��� 298

Demonstration 1��� 299

Demonstration 2��� 303

Implementing Disconnected Data Architecture�� 312

MySqlDataAdapter�� 313

MySqlCommandBuilder�� 315

Demonstration 3��� 316

Programming with Stored Procedures��� 323

Stored Procedure to Select Records��� 324

Stored Procedure to Insert One Record�� 324

Stored Procedure to Delete One Record��� 325

One Simple Verification�� 325

Demonstration 4��� 327

Q&A Session��� 333

Table of Contents

xii

Connection Pooling�� 337

Final Words�� 338

Summary��� 339

��Appendix A: Installing MySQL and Testing SQL Commands���������������������������������� 341

��Upgrade Scenario�� 374

��Testing the Installation and Executing Simple SQL Statements��� 376

��Appendix B: Recommended Reading��� 387

Index�� 389

Table of Contents

xiii

About the Author

Vaskaran Sarcar obtained his master’s degree in Software

Engineering from Jadavpur University, Kolkata (India), and

an MCA from Vidyasagar University, Midnapore (India). He

was a National Gate Scholar (2007-2009) and has more than

12 years of experience in education and the IT industry.

Vaskaran devoted his early career (2005-2007) to teaching

at various engineering colleges. Later he joined HP India

PPS R&D Hub Bangalore and worked there until August

2019. At the time of his retirement from the IT industry,

he was a senior software engineer and team lead at HP. To

follow his dream and passion, Vaskaran is now a full-time

author. You can connect with him at vaskaran@rediffmail.

com or find him on LinkedIn at www.linkedin.com/in/

vaskaransarcar. 

Other books by Vaskaran include

•	 Design Patterns in C#, Second Edition (Apress, 2020 (Upcoming))

•	 Interactive Object-Oriented Programming in Java, Second Edition

(Apress, 2019)

•	 Java Design Patterns, Second Edition (Apress, 2019)

•	 Design Patterns in C# (Apress, 2018)

•	 Interactive C# (Apress, 2017)

•	 Interactive Object-Oriented Programming in Java (Apress, 2016)

•	 Java Design Patterns (Apress, 2016)

•	 C# Basics: Test Your Skill (CreateSpace, 2015)

•	 Operating System: Computer Science Interview Series (CreateSpace,

2014)

http://www.linkedin.com/in/vaskaransarcar
http://www.linkedin.com/in/vaskaransarcar

xv

About the Technical Reviewer

Carsten Thomsen is primarily a back-end developer but

works with smaller front-end bits as well. He has authored

and reviewed several books, and created numerous

Microsoft Learning courses, all on software development.

He works as a freelancer/contractor in various countries

in Europe, working with tools such as Azure, Visual

Studio, Azure DevOps, and GitHub. Being an exceptional

troubleshooter who asks the right questions—including the

less logical ones—in a most-logical-to-least-logical fashion,

he also enjoys working with architecture, research, analysis,

development, testing, and bug fixing. Carsten is a very good

communicator with great skills in mentoring, team leadership, research, and presenting

new material.  

xvii

Acknowledgments

At first, I thank the Almighty. I sincerely believe that with His blessings only, could I

complete this book. I extend my deepest gratitude and thanks to the following people.

Ratanlal Sarkar and Manikuntala Sarkar: my dear parents, with your blessings only,

could I complete this work.

Indrani, my wife; Ambika, my daughter; and Aryaman, my son: sweethearts, once

again, without your love, I could not proceed at all. I know that we need to limit many

social gatherings and invitations to complete my books on time and each time. I promise

you that I’ll take a long break and spend more time with you.

Sambaran, my brother: Thank you for your constant encouragement towards me.

Carsten, my technical advisor: I know that whenever I was in need, your support was

there. Thank you one more time.

Shekhar, my another technical advisor: I am always thankful for all your

contributions in my previous books. I must acknowledge your support for the newly

added chapter in this edition.

Deepak, my ex-colleague cum senior: A special thanks to you for investing your time

in writing a foreword for my book. From the moment when experts like you agreed to

write for me, I got additional motivation to enhance the quality of my work.

Celestin, Laura, Smriti, Shrikant: Thanks for giving me another opportunity to work

with you and Apress.

Krishnan, Rajan, Ramraj, Selvakumar, Pushparaj: Thank you for your exceptional

support to beautify my work. Your efforts are truly extraordinary.

Lastly, I extend my deepest gratitude to my publisher, the editorial board members,

and everyone who directly or indirectly supported this book.

xix

Foreword

“A tool is only as good as its user!”

Building on this truth, using a programming language is similar in that its effectiveness

is only as good as the knowledge and skill of the person using it. This book is for people

who have a basic understanding of how to write a C# program but want to leverage more

advanced constructs for building optimized, scalable, long-lasting solutions.

C# has come a long way from being a Microsoft Windows tool a few years ago. Now

it is also used in much larger ecosystems, such as Mac and Linux. This makes the code

a lot more portable. Microsoft also integrated their recent acquisition of Mono into

their portfolio, so that a coder can target the code to run on multiple platforms. As the

popularity of the language increases, it is important that coders learn about its advanced

features to make the best use of the framework.

I have spent a good part of my career programming and reviewing others’ C# code.

I realized that many developers do not use the language effectively because they are

not aware of the more useful features that it has to offer. This book serves as a guide for

exactly that—learning the more advanced concepts.

Today, it is more important than ever to not only consider how quickly a solution can

be developed, but also about how the solution can be reused across multiple platforms

and fine-tuned for each platform. Knowing advanced topics helps developers to easily

fine-tune to the environment that their code runs on, so that they are optimized for that

environment.

The book starts with concepts such as delegates and events. It then goes into finer

detail, including programming with generics, multithreading, database connections,

and more. In each chapter, Vaskaran explains the construct in a very simple way, with

examples, and then proceeds to a Q and A session. It almost mimics a classroom session.

This style engages the reader in learning the topic and answers questions. This is an

excellent way to absorb the fundamental concepts and to ensure understanding them.

xx

Vaskaran has worked with me for many years and has always been very passionate

about C# and the nonfunctional aspects of programming, such as memory management,

performance, and so forth. In this book, he has done a commendable job with putting

together great examples that clearly explain the concepts. I am sure that this book will

propel C# developers to the next level in a very short time.

Deepak Seshadri

Performance Architect

Printer Firmware, HP Inc.

Foreword

xxi

Introduction

This book is an introductory guide to advanced programming in C#. The examples and

code have been deliberately kept simple to allow you to concentrate on understanding

important concepts in depth.

In 2015, I wrote C# Basics: Test your Skill, which covered fundamental concepts

in C#. In 2018, the book was further enhanced and Interactive C# was published.

Immediately after its release, it became the “#1 New Release” in the C# and object-

oriented programming category on Amazon.com. The book was translated into Japanese

in 2019. This kind of success motivated me to enhance the work further. I was involved

in teaching since 2005, which was another motivation to introduce a book like this one.

So, it is my privilege to present you with Getting Started with Advanced C#: Upgrade Your

Programming Skills. Before I proceed further, I want to thank you for your support to

motivate me to write a book like this.

If you ask me about the most fascinating characteristic of this book, I’d tell you

that similar to Interactive C#, it is also interactive and simple, but this time, you start

exploring advanced programming by using some important features in C#. In this book,

my goal was not to demonstrate typical and tough programs using all the latest features

of C#; instead, like my previous books, the goal is to fuel your creativity and encourage

you to implement advanced concepts using core constructs in C#. I always believe that

the word core is most important when you learn a programming language. Whatever is

the latest feature today, will be outdated tomorrow but the core constructs are evergreen,

and in most cases, they function behind the new features unnoticed. This is why

although this book is for advanced programmers, in Part 1, I focus on the fundamental

features of advanced C#. I show you how to incorporate them in different programming

techniques in Part 2.

You’ll probably agree that when you travel an unknown path to a destination, it

helps to have a caring guide. Learning a new programming language through a book

is a journey that was always on my mind. In this book, I not only explain topics in

an informative way, I also made the book interactive by using Q&A sessions in each

chapter. These sessions assist you in your learning process, and they act as “doubt-

clearing sessions” that make you a feel that you are asking your guide questions (or

xxii

expressing your doubts), and you are receiving answers from him in a simple one-to-one

communication. In most cases, you’ll get a full demonstration of programs along with

the output, followed by important analysis to get maximum benefit. As a result, you can

continue reading without interruption.

The aim of this book is to give you a classroom environment feeling, where you are

not only a listener, you are also an active participant who can ask questions and get the

answers to them. Before you jump into the topics, let me highlight few more points about

the book, including the way the chapters are organized and who the intended readers are.

�How the Book Is Organized
The book has two major parts.

•	 Part 1 consists of the first three chapters, in which you see

the discussion and implementation of delegates, events, and

lambda expressions. These are the building blocks for advanced

programming in C#, and before you move to Part 2, you need to

master them. If you have already gone through other C# books,

you may be wondering why there are three separate chapters for

delegates, events, and lambda expressions. In those books, you may

see their presence in a single chapter with only some sample code.

But as you go forward in this book, you’ll clearly understand why a

detailed discussion on these topics is vital to really mastering the

advanced concepts and using built-in advanced features in C#.

•	 In Part 2, there are four chapters. You will experience advanced

programming in detail by using the concepts/constructs that you

learned in Part 1. You start with generic programming and then learn

about thread programming and asynchronous programming to

benefit from a multithreaded environment.

•	 In C#, database programming can be done in three different ways: using

connected layers, using disconnected layers, or using Entity Framework

(EF). This book is for the advanced C# beginners, and LINQ (which is

the basis of EF) is not discussed. So, I excluded the discussion on EF. In

the final chapter, you’ll learn database programming using ADO.NET

to connect to a MySQL database and how to exercise SQL statements

Introduction

xxiii

and stored procedures through your C# applications. You will not find

many materials that cover the use of C# with MySQL (instead, you may

see other RDBMS; for example, Microsoft SQL Server), but I want to

assure you that MySQL is a big name and considered a top player in

RDBMS. Most importantly, its open source and widely used.

•	 I believe that the code in this book is compatible with all the latest

and upcoming versions of C#. I have used Visual Studio, which is an

integrated development environment (IDE) from Microsoft. Although

you can run a C# application in many ways (for example, using

Notepad and command prompts), I opted for Visual Studio because

it’s very common and widely used in C# applications.

•	 It’s important to note that apart from a few special programs, I used

.NET Core as my target framework, which simply uses C# 8.0. As

per Microsoft, the latest C# compiler can determine the default

language version based on the target framework(s). This is because

the C# language may use features that are used in specific .NET

implementation only. I recommend that you go to https://docs.

microsoft.com/en-us/dotnet/csharp/language-reference/

configure-language-version if you are interested in C# versioning.

•	 Please remember that as you learn about these concepts, try writing

your own code; only then will you master an area.

•	 You can download all the source code in the book from Apress’s

website. I plan to maintain the errata, and I can also make any

necessary updates/announcements there. I suggest that you visit the

Errata pages to receive any corrections or updates.

�Prerequisite Knowledge
The target readers for this book are those who are familiar with the basic language

constructs in C# and know about object-oriented concepts like polymorphism,

inheritance, abstraction, encapsulation, and most importantly, know how to compile

or run a C# application in Visual Studio. This book does not invest time in topics that

are easily available, such as how to install Visual Studio on your system, how to write a

“Hello World” program in C#, or how to use an if-else statement or a while loop. Instead,

Introduction

https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/configure-language-version
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/configure-language-version
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/configure-language-version

xxiv

the book starts with a discussion on delegates. As I said before, in this book, my focus is

on the core constructs of advanced C#, and I explain how these concepts can be learned

and used effectively. Finally, in Chapter 7, I have used some simple SQL queries. Though

their usage are clearly described and shown, but a minimum knowledge of SQL can help

you a lot.

�Who This Book Is For
In short, you should read this book if the answer is “yes” to any of the following
questions.

•	 Are you familiar with basic constructs in C# and familiar with

basic object-oriented concepts like polymorphism, inheritance,

abstraction, and encapsulation?

•	 Do you know how to set up your coding environment?

•	 Do you want to explore advanced programming in C# step by step?

•	 Do you want to explore the following advanced C# topics: generic

programming, thread programming, asynchronous programming,

and database programming (using ADO.NET and MySQL)?

•	 Are you want to know how the core constructs work behind the

advanced features?

You probably shouldn’t read this book if the answer is “yes” to any of the
following questions.

•	 Are you totally new to C#?

•	 Do you want to learn advanced concepts in C# excluding the topics

mentioned previously?

•	 Do you want to explore the latest features of C# only?

•	 Do you dislike a book that emphasizes Q&A sessions?

•	 “I do not like Windows, Visual Studio, and .NET Core. I want to learn

and use C# without them.” Is this statement true for you?

•	 “I prefer to use Entity Framework (EF) for my database programs,

and I do not like MySQL.” Is this statement true for you?

Introduction

xxv

�Guidelines for Using This Book
Here are some suggestions for you to use the book more effectively:

•	 The first six chapters of the book are linked. So, I suggest you go

through the chapters sequentially. Also, it is possible that some

fundamental questions are discussed in the “Q&A Session” of a

previous chapter, and I have not repeated those in the later chapters.

•	 Most of these programs are tested with C# 8.0 and I have used

Visual Studio (Community 2019, Version 16.3.9) IDE in a Windows

10 environment. When I started the book, I Started with the latest

versions available at that time. But as expected, version updates are

keep coming and I also kept updating. But all these versions details

should not matter much to you because I have used the fundamental

constructs of advanced C# only. So, I believe that these codes

should execute smoothly in the upcoming versions of C#/Visual

studio as well. There are only few exceptions, in which I used .NET

Framework. For example, in chapter 6, when you learn Asynchronous

programming, I have shown you implementations of IAsyncResult

patterns and event based asynchronous patterns. These are not

recommended (and supported) for upcoming development. If you

execute these programs in .NET Core 3.0, you’ll receive following

exception saying System.PlatformNotSupportedException:

'Operation is not supported on this platform. So, for these

examples, I used .NET Framework 4.7.2.

•	 I tested some of these codes in different systems and different

environments (including online editors) and I always received the

expected output. With these experiments, I believe that the results

should not vary in other environments as well, but you know the

nature of software—it is naughty. So, I recommend that if you want to

see the exact same outputs, it will be better if you can mimic the same

environment.

Introduction

xxvi

�Conventions Used in This book
All the output and code in the book follow the same font and structure. To draw your

attention, in some places, I have made the code bold. For example, consider the

following output fragment and the lines in bold.

Assigning an instance method to a delegate object.

Calling CalculateSum(..) method of OutsideProgram class using a delegate.

Sum of 50 and 70 is: 120

delOb.Target=DelegateExample2.OutSideProgram

delOb.Target==null? False

delOb.Method=Int32 CalculateSum(Int32, Int32)

To print messages in a console, I used the traditional style, although you may prefer

to use string interpolation (which basically replaced the need of String.Format(…)

starting in C# 6.0). In most examples, I use the following format.

Console.WriteLine("-{0} from Method1() prints {1}", Thread.CurrentThread.

Name, i);

But if you use string interpolation, you may write

Console.WriteLine($"{Thread.CurrentThread.Name} from MyMethod() prints

{i}");

I agree that the second one is more readable but to support legacy code too, I opted

for the traditional approach. Each of these approaches works fine and not a blocker for

you to understand a C# code but the choice is up to you.

�Final Words
I believe that the book is designed for you in such a way that upon its completion, you

will have developed an adequate knowledge of the topics, you will have efficiently

learned to use the advanced features of this powerful language, and most importantly,

you’ll know how to go further.

Lastly, I hope that this book can help you and you will value the effort.

Introduction

PART I

Getting Familiar with
Building Blocks
•	 Chapter 1: Delegates

•	 Chapter 2: Events

•	 Chapter 3: Lambda Expressions

3
© Vaskaran Sarcar 2020
V. Sarcar, Getting Started with Advanced C#, https://doi.org/10.1007/978-1-4842-5934-4_1

CHAPTER 1

Delegates
The concept of delegates is a very powerful feature in many programming languages,

including C#. I believe that the discussion of advanced programming in C# cannot start

without delegates. In this chapter, you learn about delegates and why they are essential.

Let’s recall the fundamentals of class and object. To create an object—let’s say, obA

from a class A, you can write something like the following.

A obA=new A();

Here, the object reference obA points to an object of A. Similar to this, delegates

are reference types, but the key difference is that they point to methods. Simply put,

a delegate is an object that knows how to invoke a method. A delegate derives from

System.Delegate class.

Let’s look at it from another point of view. You know what a variable is and how it

behaves. You have seen that you can put different boolean values (true/false), strings

(or, words), numbers (integer, double, etc.) in respective types of variables. But when you

use delegates, you can assign a method to a variable and pass it around.

In short, by using delegates, you can treat your methods like objects. So, you can

store a delegate in a variable, pass it as method parameter, and return it from a method.

The use of delegates can help promote type-safety. (In a broad sense, the term type-

safety simply tells you that you cannot assign one type to another type if they are not

compatible. The check for type-safety may appear both at compile time and runtime).

This is why delegates are often referred to as type-safe function pointers.

In demonstration 1, a method called Sum takes two integer (int) parameters and

returns an integer, like the following.

public static int Sum(int a, int b)

{

 return a + b;

}

https://doi.org/10.1007/978-1-4842-5934-4_1#ESM

4

In this case, you can declare a delegate to point to the Sum method, as follows.

DelegateWithTwoIntParameterReturnInt delOb = new

DelegateWithTwoIntParameterReturnInt (Sum);

But before that, you need to define the DelegateWithTwoIntParameterReturnInt

delegate, which must have the same signature, as follows.

delegate int DelegateWithTwoIntParameterReturnInt(int x, int y);

The return type, the parameters, and their corresponding order are the same for both

the Sum method and the DelegateWithTwoIntParameterReturnInt delegate. I chose

a long name for my delegate for better readability. You can always choose your own

delegate name.

The first important point to understand is that once you have

DelegateWithTwoIntParameterReturnInt, you can use it to keep track of any method

that takes two integers as input parameters and returns an integer; for example, to

calculate the sum of two ints, the difference of two ints, the multiplication of two ints, the

division of two ints, and so forth.

POINTS TO REMEMBER

•	 A delegate instance contains details of a method rather than data.

•	 You can use delegates for methods that match the

delegate’s signature. For example, as the name suggests,

DelegateWithTwoIntParameterReturnInt is compatible with any

method that accepts two int parameters and returns an int.

•	 When you use a delegate to invoke a method, at a high level, the overall

process can be divided into two parts. In the first part, you (the caller) invoke

the delegate, and in the second part, the delegate calls your target method. This

mechanism decouples a caller from a target method.

Chapter 1 Delegates

5

�Definition
A delegate is a reference type derived from System.Delegate, and its instances are used

to call methods with matching signatures and return types. Later in this chapter, you’ll

learn about variances, and you’ll discover that the word compatible is more suitable than

the word matching in this context. I’m trying to make things as simple as possible.

The dictionary meaning of the word delegate is “a representative or an agent.” The

delegates in C# programming represent methods with matching signatures. This is the

general form of a delegate declaration.

<modifier> delegate <return type> (parameter list);

The following are examples of delegate declarations.

delegate void DelegateWithNoParameter();

public delegate int MyDelegateWithOneIntParameter(int i);

public delegate double MakeTotal(double firstNo, double secondNo);

delegate int DelegateWithTwoIntParameterReturnInt(int x, int y);

You may notice that these are similar to methods without a body. But, when the

compiler sees the keyword delegate, it understands that you are using the type that

derives from System.Delegate.

To begin with delegates, in the following example, I show you two cases. The first

case will look familiar to you. You simply invoke a method without using a delegate. In

the second case, you use a delegate to invoke a method.

�Demonstration 1
In this demonstration, note the following segment of code.

// Creating a delegate instance

// �DelegateWithTwoIntParameterReturnInt delOb = new DelegateWithTwoInt

ParameterReturnInt(Sum);

// Or, simply write as follows:

DelegateWithTwoIntParameterReturnInt delOb = Sum;

I kept the comments that say that I’m using the short form when I create the delegate

instance. You can use any of them.

Chapter 1 Delegates

6

You can also make the code size shorter when you use delOb(25,75) instead of

delOb.Invoke(25,75). This is why I also kept the following comments.

// delOb(25,75) is shorthand for delOb.Invoke(25,75)

When you use the short form (i.e., you assign the method name to the delegate

instance without using a new operator or explicitly invoking the delegate’s constructor),

you are using a feature known as method group conversion. This form has been allowed

since C# version 2.0.

Now let’s go through the complete example and the corresponding output and

analysis.

using System;

namespace DelegateExample1

{

 delegate int DelegateWithTwoIntParameterReturnInt(int x, int y);

 class Program

 {

 public static int Sum(int a, int b)

 {

 return a + b;

 }

 static void Main(string[] args)

 {

 Console.WriteLine("***A simple delegate demo.***");

 �Console.WriteLine("\n Calling Sum(..) method without using a

delegate:");

 Console.WriteLine("Sum of 10 and 20 is : {0}", Sum(10, 20));

 //Creating a delegate instance

 //�DelegateWithTwoIntParameterReturnInt delOb = new DelegateWith

TwoIntParameterReturnInt(Sum);

 //Or,simply write as follows:

 DelegateWithTwoIntParameterReturnInt delOb = Sum;

 Console.WriteLine("\nCalling Sum(..) method using a delegate.");

 int total = delOb(10, 20);

Chapter 1 Delegates

7

 Console.WriteLine("Sum of 10 and 20 is: {0}", total);

 /* Alternative way to calculate the aggregate of the numbers.*/

 //delOb(25,75) is shorthand for delOb.Invoke(25,75)

 �Console.WriteLine("\nUsing Invoke() method on delegate instance,

calculating sum of 25 and 75.");

 total = delOb.Invoke(25,75);

 Console.WriteLine("Sum of 25 and 75 is: {0}", total);

 Console.ReadKey();

 }

 }

}

�Output

The following is the output from running this program.

A simple delegate demo.

Calling Sum(..) method without using a delegate:

Sum of 10 and 20 is : 30

Calling Sum(..) method using a delegate.

Sum of 10 and 20 is: 30

Using Invoke() method on delegate instance, calculating sum of 25 and 75.

Sum of 25 and 75 is: 100

�Analysis

Let’s take a closer look at the code. To make it easier to understand, Figure 1-1 presents a

partial screenshot of the IL code.1

1�You know that when we compile our .net program using any .Net obedient language like C#,
initially our source code will be converted into an intermediate code, which is known as MSIL
(Microsoft Intermediate Language). This IL code is interpreted by CLR (Common Language
Runtime). Upon program execution, this IL code will be converted into the binary executable
binary code or native code.

 And CLR is a framework layer that exists above OS and handles all the execution of the
.net applications. The programs must go through the CLR so that there will be no direct
communication with the OS.

Chapter 1 Delegates

8

Notice that when you create a delegate, the C# compiler turns it into a class

that extends from MulticastDelegate. Let’s go one level deeper. If you see the

implementation of MulticastDelegate, you see that it derives from the System.Delegate

class. For your reference, Figure 1-2 presents a partial screenshot from Visual

Studio 2019.

Figure 1-2.  Partial screenshot of MulticastDelegate class from Visual Studio
IDE 2019

Figure 1-1.  Partial screenshot of IL code for DelegateExample1

Chapter 1 Delegates

9

Figure 1-3 shows the IL code for the Main method in demonstration 1.

In Figure 1-3, the line that the arrow points to shows that delOb(10,20) is the

syntactic shortcut for delOb.Invoke(10,20).

POINTS TO REMEMBER

•	 The .NET Framework defines the delegate and the MulticastDelegate class.

When you create a delegate, the C# compiler makes a class that derives from

MulticastDelegate, which derives from the Delegate class.

•	 Only the C# compiler can create a class that derives from the Delegate class or

the MulticastDelegate class, but you cannot do the same. In other words,

these delegate types are implicitly sealed. You will get a compile-time error if

you write something like the following.

class MyClass : Delegate { }

or,

class MyClass : MulticastDelegate { }

Figure 1-3.  Partial screenshot of IL code for the Main method in prior
demonstration

Chapter 1 Delegates

10

•	 In the demonstration, you saw that delOb(10,20) is a syntactic shortcut for

delOb.Invoke(10,20). So, in real-world programming, it’s always better to

do a null check prior to invoke the operation.

•	 Delegate methods are also referred to as callable entities.

�Q&A Session
1.1  In demonstration 1, you define the delegate outside of the Program class. Is

this mandatory?
No. Since it’s a class type, you can define it inside of a class, outside of a class, or at

the beginning of the namespace.

1.2	 You said that only the C# compiler can create a class that derives from the
Delegate class or the MulticastDelegate class, but you cannot do the same. Do you
mean that these delegate types are implicitly sealed?

Yes.

1.3	 Is the use of delegates limited to static methods?
You can refer both static and non-static methods using delegates. Delegates do not

care about the object type that is invoking the method. So, this delegate

delegate int MyDelegate(int aNumber);

it can refer the instance method.

public int Factorial(int i)

{

 // method body

}

can also refer the following static method.

public static int MyStaticMethod(int a)

{

 // method body

}

But there are some important differences when you use a static method or a non-

static method in the context of a delegate. You’ll see a case study on this shortly.

Chapter 1 Delegates

11

�Comparing a Static Method with an Instance
Method
I already said that you can assign both the static methods and the instance methods

to a delegate object. To demonstrate this, I modified demonstration 1. I added a new

class, OutsideProgram, and placed one instance method, called CalculateSum, in it.

I’ve assigned both the static method, Sum, and instance method, CalculateSum, to the

delegate instance, delOb, and analyzed each case.

In each case, you see the following lines of code.

Console.WriteLine("delOb.Target={0}", delOb.Target);

Console.WriteLine("delOb.Target==null? {0}", delOb.Target == null);

Console.WriteLine("delOb.Method={0}",delOb.Method);

The output for these lines of code show you that when you assign a non-static

method to a delegate object, the object maintains a reference not only to the method,

but also to the instance to which this method belongs.

The Target property in the Delegate class can be used to verify this. This is why you

may notice different output for the first two lines when you compare a static method and

an instance method in this context. For your reference, I’m showing you the description

of the Target property from Visual Studio, which is as follows.

// Summary:

// Gets the class instance on which the current delegate invokes

//the instance method.

//

// Returns:

//The object on which the current delegate invokes the instance

//method, if the delegate represents an instance method; null

//if the delegate represents a static method.

[NullableAttribute(2)]

public object? Target { get; }

This description from Visual Studio also says that if you assign a static method to the

delegate object delOb, then delOb.Target will contain null.

Chapter 1 Delegates

12

�Demonstration 2
using System;

namespace DelegateExample2

{

 delegate int DelegateWithTwoIntParameterReturnInt(int x, int y);

 class Program

 {

 public static int Sum(int a, int b)

 {

 return a + b;

 }

 static void Main(string[] args)

 {

 �Console.WriteLine("***Comparing the behavior of a static

method and instance method when assign them to a delegate

instance.***");

 �Console.WriteLine("Assigning a static method to a delegate

object.");

 //Assigning a static method to a delegate object.

 DelegateWithTwoIntParameterReturnInt delOb = Sum;

 �Console.WriteLine("Calling Sum(..) method of Program Class

using a delegate.");

 int total = delOb(10, 20);

 Console.WriteLine("Sum of 10 and 20 is: {0}", total);

 Console.WriteLine("delOb.Target={0}", delOb.Target);

 �Console.WriteLine("delOb.Target==null? {0}", delOb.Target ==

null);//True

 �Console.WriteLine("delOb.Method={0}", delOb.Method);

 OutSideProgram outsideOb = new OutSideProgram();

 �Console.WriteLine("\nAssigning an instance method to a delegate

object.");

Chapter 1 Delegates

13

 //Assigning an instance method to a delegate object.

 delOb = outsideOb.CalculateSum;

 �Console.WriteLine("Calling CalculateSum(..) method of

OutsideProgram class using a delegate.");

 total = delOb(50, 70);

 Console.WriteLine("Sum of 50 and 70 is: {0}", total);

 �Console.WriteLine("delOb.Target={0}", delOb.Target);

//delOb.Target=DelegateEx1.OutSideProgramClass

 �Console.WriteLine("delOb.Target==null? {0}", delOb.Target ==

null);//False

 �Console.WriteLine("delOb.Method={0}", delOb.Method);

 Console.ReadKey();

 }

 }

 class OutSideProgram

 {

 public int CalculateSum(int x, int y)

 {

 return x + y;

 }

 }

}

�Output

This is the output. I made a few lines bold to draw your attention.

***Comparing the behavior of a static method and instance method when

assign them to a delegate instance.***

Assigning a static method to a delegate object.

Calling Sum(..) method of Program Class using a delegate.

Sum of 10 and 20 is: 30

delOb.Target=

delOb.Target==null? True

delOb.Method=Int32 Sum(Int32, Int32)

Chapter 1 Delegates

14

Assigning an instance method to a delegate object.

Calling CalculateSum(..) method of OutsideProgram class using a delegate.

Sum of 50 and 70 is: 120

delOb.Target=DelegateExample2.OutSideProgram

delOb.Target==null? False

delOb.Method=Int32 CalculateSum(Int32, Int32)

�Using Multicast Delegates
By using a delegate instance, you can refer to multiple target methods. You can do this by

using the += operator. When a delegate is used to encapsulate more than one method of

a matching signature, it is a multicast delegate. These delegates are subtypes of System.

MulticastDelegate, which is a subclass of System.Delegate.

In the following example, you target three methods. To demonstrate a general case,

I combined both static and instance methods to the delegate object. The following code

segment with supportive comments were used.

// Target a static method

MultiDelegate multiDel = MethodOne;

// Target another static method

multiDel += MethodTwo;

// Target an instance method

multiDel += new OutsideProgram().MethodThree;

In a case like this, the delegates are invoked in the order that you added them in your

calling chain. When you invoke multiDel(), all three methods are invoked.

POINTS TO REMEMBER

•	 The following two lines of code are functionally equivalent.

multiDel += MethodTwo;

//Same as the following line

multiDel = multiDel+MethodTwo;

•	 When you use a multicast delegate, the delegates are invoked in the order that

you added them in your calling chain.

Chapter 1 Delegates

15

You can increase the chain of methods by using the += operator. Similarly, you

can reduce the chain by using the -= operator. To demonstrate this, before I invoke

multiDel() for the second time in the following example, I removed MethodTwo from the

chain using the following line of code.

multiDel -= MethodTwo;

Now go through the following example, which shows a complete demonstration of

using a multicast delegate.

�Demonstration 3
using System;

namespace MulticastDelegateExample1

{

 delegate void MultiDelegate();

 class Program

 {

 public static void MethodOne()

 {

 �Console.WriteLine("A static method of Program class-

MethodOne() executed.");

 }

 public static void MethodTwo()

 {

 �Console.WriteLine("A static method of Program class-

MethodTwo() executed.");

 }

 static void Main(string[] args)

 {

 Console.WriteLine("***Example of a Multicast Delegate.***");

 // Target a static method

 MultiDelegate multiDel = MethodOne;

 // Target another static method

 multiDel += MethodTwo;

Chapter 1 Delegates

16

 //Target an instance method

 multiDel += new OutsideProgram().MethodThree;

 multiDel();

 //Reducing the delegate chain

 �Console.WriteLine("\nReducing the length of delegate chain by

discarding MethodTwo now.");

 multiDel -= MethodTwo;

 //The following invocation will call MethodOne and MethodThree now.

 multiDel();

 Console.ReadKey();

 }

 }

 class OutsideProgram

 {

 public void MethodThree()

 {

 �Console.WriteLine("An instance method of OutsideProgram class

is executed.");

 }

 }

}

�Output

The following is the output from running this program.

Example of a Multicast Delegate.

A static method of Program class- MethodOne() executed.

A static method of Program class- MethodTwo() executed.

An instance method of OutsideProgram class is executed.

Reducing the length of delegate chain by discarding MethodTwo now.

A static method of Program class- MethodOne() executed.

An instance method of OutsideProgram class is executed.

Chapter 1 Delegates

17

�Analysis

In demonstration 3, you saw that the target methods have a void return type. This is

because multicast delegates are often used for methods with void return types.

�Q&A Session
1.4  You said that multicast delegates are often used for methods with void return

types. What is the reason for this?
A multicast delegate targets multiple methods from an invocation list. However, a

single method or delegate invocation can return only a single value. If you use multiple

methods with non-void return types in your multicast delegate invocation, you will get the

return value from the last method in the invocation list. Although other methods are also

called, those values are discarded. The following example gives you a clearer picture of this.

�Demonstration 4
using System;

namespace MulticastDelegateExample2

{

 delegate int MultiDelegate();

 class Program

 {

 public static int MethodOne()

 {

 �Console.WriteLine("A static method of Program class-

MethodOne() executed.");

 return 1;

 }

 public static int MethodTwo()

 {

 �Console.WriteLine("A static method of Program class-

MethodTwo() executed.");

 return 2;

 }

Chapter 1 Delegates

18

 public static int MethodThree()

 {

 �Console.WriteLine("A static method of Program class-

MethodThree() executed.");

 return 3;

 }

 static void Main(string[] args)

 {

 �Console.WriteLine("***A case study with a multicast delegate

when we target non-void methods.***");

 // Target MethodOne

 MultiDelegate multiDel = MethodOne;

 // Target MethodTwo

 multiDel += MethodTwo;

 // Target MethodThree

 multiDel += MethodThree;

 int finalValue=multiDel();

 Console.WriteLine("The final value is {0}", finalValue);

 Console.ReadKey();

 }

 }

}

�Output

The following is the output from running this program.

***A case study with a multicast delegate when we target non-void

methods.***

A static method of Program class- MethodOne() executed.

A static method of Program class- MethodTwo() executed.

A static method of Program class- MethodThree() executed.

The final value is 3

Chapter 1 Delegates

19

�Analysis

The three methods from the invocation list (MethodOne(), MethodTwo(), and

MethodThree()) were called, but the final returned value was 3, which comes from

MethodThree.

�Q&A Session
1.5  I understand that multicast delegates are not useful for methods with a non-

void return type because the intermediate return values are discarded. But I believe
that nothing is preventing me from storing those values and using them in different
ways. Is this correct?

Absolutely. You can always gather those values and use them as you wish; but it is rarely

done. Also, at the time of writing, there was no syntactical shortcut for this in C# language

specification. So, if you use multicast delegates for methods with a non-void return type, the

intermediate return values will be lost, which is often considered a functionality loss.

In addition, you need to pay special attention to exception handling. If a method in

your invocation list throws an exception, other methods will not get a chance to handle it.

1.6  Can you provide an example that demonstrates why exception handling is a
concern when I use multicast delegates?

Let’s modify MethodOne() in demonstration 3 as follows.

public static void MethodOne()

{

 �Console.WriteLine("A static method of Program class- MethodOne()

executed.");

 // For Q&A 1.6

 // Let's say, some code causes an exception

 // like the following

 int a = 10, b = 0,c;

 c = a / b;

 Console.WriteLine("c={0}",c);

}

Now execute the program again. This time, you’ll get the following exception, and as

a result, the next method in the invocation list will not execute. This is why MethodTwo()

Chapter 1 Delegates

20

will not run; it does not have a chance to handle the exception. Figure 1-4 is a runtime

screenshot from Visual Studio.

Figure 1-4.  A runtime error screenshot from Visual Studio IDE

1.7  In demonstration 1, you used the following line:

DelegateWithTwoIntParameterReturnInt delOb = Sum;

Now I’m worried. What will happen if I overload Sum methods?
It does not matter. Delegates act like type-safe function pointers because they

can track full method signatures (for example, the number of parameters, the type of

parameters, the return type of methods) accurately.

When you use delegates and have overloaded methods, the compiler can bind the

correct method for you. To investigate this, consider the following example, where the

Sum method is overloaded (I used static methods, but you can use instance methods

too). There are two overloaded versions of the Sum method. In one case, the Sum method

accepts two int parameters, and in the other case, it accepts three int parameters; but

DelegateWithTwoIntParameterReturnInt can bind the intended method properly.

Chapter 1 Delegates

21

�Demonstration 5
using System;

namespace CaseStudyWithOverloadedMethods

{

 delegate int DelegateWithTwoIntParameterReturnInt(int x, int y);

 class Program

 {

 public static int Sum(int a, int b)

 {

 return a + b;

 }

 public static int Sum(int a, int b, int c)

 {

 return a + b + c;

 }

 static void Main(string[] args)

 {

 �Console.WriteLine("***A case study with overloaded

methods.***");

 DelegateWithTwoIntParameterReturnInt delOb = Sum;

 Console.WriteLine("\nCalling Sum(..) method using a delegate.");

 int total = delOb(10, 20);

 Console.WriteLine("Sum of 10 and 20 is: {0}", total);

 Console.ReadKey();

 }

 }

}

�Output

You get the following output when you run this program.

A case study with overloaded methods.

Calling Sum(..) method using a delegate.

Sum of 10 and 20 is: 30

Chapter 1 Delegates

22

�Analysis

It is important to note that if you do not have the correct overloaded version, you’ll get a

compile-time error. For example, if you comment out the intended method as follows,

//public static int Sum(int a, int b)

//{

// return a + b;

//}

you’ll get the following compilation error:

No Overload for 'Sum' matches delegate

'DelegateWithTwoIntParameterReturnInt'

Figure 1-5 is a partial screenshot from Visual Studio IDE.

�Q&A Session
1.8  How are delegates commonly used?
You see the use of delegates in event handling and callback methods (particularly in

asynchronous programming). I’ll discuss this in later chapters of the book.

1.9  Can I use delegates to point to constructors?
No. But programmatically, you can achieve a similar effect. For example, consider

demonstration 2. Let’s provide a public constructor to the OutsideProgram class. After

this modification, it looks like the following.

class OutSideProgram

 {

 //For Q&A 1.9

 public OutSideProgram()

Figure 1-5.  A compile-time error screenshot from Visual Studio IDE

Chapter 1 Delegates

23

 {

 Console.WriteLine("\nOutSideProgram constructor is called.");

 }

 public int CalculateSum(int x, int y)

 {

 return x + y;

 }

 }

Let’s define a delegate, as follows.

delegate OutSideProgram ConsGenerator();

Now, inside Main, you can write the following lines (I used a lambda expression

here. You’ll learn about lambda expressions in Chapter 3).

// For Q&A 1.9

ConsGenerator consGenerator =() =>

{

 return new OutSideProgram();

};

consGenerator();

If you execute the program now, you’ll see the message “OutSideProgram

constructor is called” in your output. In short, you can use a method that can mimic

the behavior of a constructor. I used the lambda expression there because I haven’t

introduced any new method that can do the same.

1.10  I learned that in method overloading, the method’s return type doesn’t
matter, but in the context of delegates, it looks as if it matters. Is this correct?

Yes. It’s an important point to remember.

Chapter 1 Delegates

24

�Variance in Delegates
When you instantiate a delegate, you can assign it a method that has a “more derived”

return type than the originally specified return type. This support is available in C#

version 2.0 and onward. On the other hand, contravariance allows a method with

parameter types that are less derived than in the delegate type. Collectively, covariance

and contravariance are known as method group variance.

To get a better understanding, let’s begin with mathematics and explore the

important terms from a mathematical point of view. Let’s suppose that you have a

domain of integers.

For case 1, assume that you have a function, f(x) = x + 2 (for all, x belongs to the

integer). If x ≤ y, then you can also say that f(x) ≤ f(y) for all x. The projection (function f)

is preserving the direction of size (I mean, before you use the function, if the part on the

left hand side is smaller (or, bigger) than the part of right hand side, after applying the

function, same will preserve).

For case 2, let’s consider another function: f (x) = –x (for all, x belongs to the integer).

In this case, you can see 10 ≤ 20 but f (10) ≥ f (20) (since f (10) = –10, f(20) = –20 and

–10 > –20). So, the projection is reversing the direction of size.

For case 3, let’s consider the following function, f(x) = x*x (for all, x belongs to the

integer). In this case, you can see –1 ≤ 0 and f (–1) > f (0). On the other hand, 1 < 2 and

f (1) < f (2). The projection (function f) neither preserves the direction of size nor reverses

the direction of size.

In case 1, function f is covariant; in case 2, function f is contravariant; and in case 3,

function f is invariant.

In C# programming, you can assign a method to a delegate with a matching

signature. But there may be a case, when the return type of your method doesn’t match

exactly with the delegate’s return type, but you identify that this method’s return type is

a derived type of the delegate’s return type. In this case, covariance allows you to match

the method with the delegate. So, in simple words, covariance allows you to match

the method which has a “more derived” return type than the “original return type” that

defined in the delegate.

Contravariance deals with parameters. It allows a method to have a parameter type

that is less derived than those in the delegate type.

Chapter 1 Delegates

25

POINTS TO REMEMBER

Let’s remember the following points.

•	 Covariance allows you to pass a derived type where a parent type was

expected; and with delegates, you apply the concept to the return types.

•	 Contravariance allows you to use a more generic (less derived) type than

originally specified. Using delegates, you can assign a method with base class

parameters to a delegate that expects to get the derived class parameters.

•	 Invariance allows you to use only the type originally specified. It’s neither

covariant nor contravariant.

Covariance and contravariance are collectively known as variance.

The concept of covariance has supported arrays since C#1.0. You can write this:

Console.WriteLine("***Covariance in arrays(C#1.0 onwards)***");

// It is not type safe

object[] myObjArray = new string[5];

// Following line will cause run-time error

myObjArray[0] = 10;

But this segment of code will cause a runtime error that outputs the following.

System.ArrayTypeMismatchException: 'Attempted to access an element as a

type incompatible with the array.'

�Covariance in Delegates
Covariance and contravariance has been supported by delegates since C# version 2.0.

Support for generic type parameters, generic interfaces, and generic delegates began

with C# 4.0. I have not yet discussed generic types. This section deals with non-generic

delegates and starts with covariance. In the upcoming examples, Bus class derives from

Vehicle class. So, you can easily understand that I use Vehicle as the base type and Bus

as the derived type.

Chapter 1 Delegates

26

�Demonstration 6
using System;

namespace CovarianceWithNonGenericDelegate

{

 class Vehicle

 {

 public Vehicle CreateVehicle()

 {

 Vehicle myVehicle = new Vehicle();

 �Console.WriteLine(" Inside Vehicle.CreateVehicle, a vehicle

object is created.");

 return myVehicle;

 }

 }

 class Bus : Vehicle

 {

 public Bus CreateBus()

 {

 Bus myBus = new Bus();

 �Console.WriteLine(" Inside Bus.CreateBus, a bus object is

created.");

 return myBus;

 }

 }

 class Program

 {

 public delegate Vehicle VehicleDelegate();

 static void Main(string[] args)

 {

 Vehicle vehicleOb = new Vehicle();

 Bus busOb = new Bus();

 �Console.WriteLine("***Testing covariance with delegates.

It is allowed C# 2.0 onwards.***\n");

 // Normal case:

Chapter 1 Delegates

27

 �/* VehicleDelegate is expecting a method with return type

Vehicle.*/

 VehicleDelegate vehicleDelegate1 = vehicleOb.CreateVehicle;

 vehicleDelegate1();

 �/* VehicleDelegate is expecting a method with return type

Vehicle(i.e. a basetype) but you're assigning a method with

return type Bus(a derived type) Covariance allows this kind of

assignment.*/

 VehicleDelegate vehicleDelegate2 = busOb.CreateBus;

 vehicleDelegate2();

 Console.ReadKey();

 }

 }

}

�Output

The following is the output from running this program.

Testing covariance with delegates. It is allowed C# 2.0 onwards.

 Inside Vehicle.CreateVehicle, a vehicle object is created.

 Inside Bus.CreateBus, a bus object is created.

�Analysis

Note this line of code with supporting comments from the preceding program.

/* VehicleDelegate is expecting a method with return type

Vehicle(i.e. a basetype)but you're assigning a method with

return type Bus(a derived type)

Covariance allows this kind of assignment.*/

VehicleDelegate vehicleDelegate2 = busOb.CreateBus;

The compiler did not complain about this line because covariance offers this kind of

flexibility.

Chapter 1 Delegates

28

�Contravariance in Delegates
Contravariance is related to parameters. Suppose that a delegate can point to a method

that accepts a derived type parameter. Using contravariance, you can use the same

delegate to point to a method that accepts a base type parameter.

�Demonstration 7
using System;

namespace ContravarianceWithNonGenegicDelegate

{

 class Vehicle

 {

 public void ShowVehicle(Vehicle myVehicle)

 {

 Console.WriteLine("Vehicle.ShowVehicle is called.");

 �Console.WriteLine("myVehicle.GetHashCode() is: {0}",

myVehicle.GetHashCode());

 }

 }

 class Bus : Vehicle

 {

 public void ShowBus(Bus myBus)

 {

 Console.WriteLine("Bus.ShowBus is called.");

 �Console.WriteLine("myBus.GetHashCode() is: {0}", myBus.

GetHashCode());

 }

 }

 class Program

 {

 public delegate void BusDelegate(Bus bus);

 static void Main(string[] args)

 {

Chapter 1 Delegates

29

 �Console.WriteLine("***Demonstration-7.Exploring Contravariance

with non-generic delegates***");

 Vehicle myVehicle = new Vehicle();

 Bus myBus = new Bus();

 //Normal case

 BusDelegate busDelegate = myBus.ShowBus;

 busDelegate(myBus);

 // Special case

 // Contravariance:

 /*

 * �Note that the following delegate expected a method that

accepts a Bus(derived) object parameter but still it can point

to the method that accepts Vehicle(base) object parameter

 */

 BusDelegate anotherBusDelegate = myVehicle.ShowVehicle;

 anotherBusDelegate(myBus);

 // Additional note:you cannot pass vehicle object here

 // anotherBusDelegate(myVehicle);//error

 Console.ReadKey();

 }

 }

}

�Output

The following is the output from running this program.

Demonstration-7.Exploring Contravariance with non-generic delegates

Bus.ShowBus is called.

myBus.GetHashCode() is: 58225482

Vehicle.ShowVehicle is called.

myVehicle.GetHashCode() is: 58225482

Chapter 1 Delegates

30

�Analysis

You can see that in the previous example, BusDelegate accepts one Bus type parameter.

Still using contravariance, when you instantiate a BusDelegate object, you can point to a

method that accepts a Vehicle type parameter. So, contravariance allows the following

type of assignment.

BusDelegate anotherBusDelegate = myVehicle.ShowVehicle;

In both cases, I passed the same object to both delegate objects. As a result, you see

the same hash code in the output. The supporting comments were kept in this example

to help your understanding.

�Q&A Session
1.11  You used the term method group variance. Why is it called a method group?
MSDN highlights the following points.

•	 A method group, which is a set of overloaded methods resulting from

a member lookup.

•	 A method group is permitted in an invocation_expression

(invocation expressions), a delegate_creation_expression (delegate

creation expressions) and as the left-hand side of an is operator, and

can be implicitly converted to a compatible delegate type (method

group conversions). In any other context, an expression classified as a

method group causes compile-time error.

The demonstration 5 case study with overloaded methods included the following line.

DelegateWithTwoIntParameterReturnInt delOb = Sum;

Here, Sum refers to a method group. When you use this kind of statement (i.e., no

parentheses with method arguments), all methods in the group are available in the same

context but the method group conversion can create the delegate that calls the intended

method. But in cases where you include parentheses with arguments, the method call

can be identified easily and unambiguously.

Chapter 1 Delegates

31

�Final Words
You can always create and use your own delegate, but in real-world programming,

it may help to use ready-made constructs to save time and effort. In this context, the

Func, Action, and Predicate delegates are very useful. But you can use them effectively

when you learn advanced topics later in the book; for example, lambda expressions and

generic programming. Let’s skip this for now and jump to the next topic: events.

�Summary
This chapter covered the following key questions.

•	 What is a delegate?

•	 What is a multicast delegate?

•	 When should you use a multicast delegate?

•	 How do you differentiate a static method from an instance method

when you target these methods with delegates?

•	 How do you implement covariance and contravariance using

delegates?

•	 How are delegates commonly used?

Chapter 1 Delegates

33
© Vaskaran Sarcar 2020
V. Sarcar, Getting Started with Advanced C#, https://doi.org/10.1007/978-1-4842-5934-4_2

CHAPTER 2

Events
The support for events is considered one of the most exciting features in C#.

The following are some fundamental characteristics of events. I suggest that you go

through these points multiple times before you code with events.

•	 The backbone of events are delegates, so it’s essential to learn

delegates before you use events.

•	 When using events, one segment of code can send a notification to

another segment of code.

•	 Events are commonly used in GUI applications. For example, when

you click a button or select a radio button, you may notice some

interesting changes in the UI layout.

•	 In a publisher-subscriber model, one object raises a notification

(event) and one or multiple objects listen to those events. The object

that raises the event is called a sender (or publisher or broadcaster),

and the object that receives the event is called a receiver (or

subscriber). The sender does not care how the receiver interprets the

events. It may not care who is registering to receive or unregistering

to stop receiving the events or notifications. You can relate this to

Facebook or Twitter. If you follow someone, you can get notifications

when that person updates his profile. If you do not want to get

notifications, you can always unsubscribe. In short, a subscriber can

decide when to start listening to events or when to stop listening to

events. (In programming terms, when to register for events and when

to unregister the events).

•	 In .NET, events are implemented as multicast delegates.

https://doi.org/10.1007/978-1-4842-5934-4_2#ESM

34

•	 Publishers contain the delegate. Subscribers register by using += on

the publisher’s delegate and unregister by using -= on that delegate.

So, when we apply += or -= to an event, there is a special meaning (in

other words, they are not shortcuts for assignments).

•	 Subscribers do not communicate with each other. As a result, you can

make a loosely coupled system. This is often the key goal in an event-

driven architecture.

•	 In GUI applications, the Visual Studio IDE can make your life easier

when you deal with events. (I believe that since these concepts are

the core of C#, it’s better to learn from the basics.)

•	 The .NET framework provides a generic delegate that supports

standard event design patterns, as follows:

public delegate void EventHandler<TEventArgs>(object

sendersource, TEventArgs e), where TEventArgs :

EventArgs;.

I haven’t discussed generics yet, so you can skip this point

for now. But it’s interesting to know that to support backward

compatibility, many events in the .NET framework follow a

non-generic custom delegate pattern.

•	 Here is an example of an event declaration:

public event EventHandler MyIntChanged;

This simply indicates that MyIntChanged is the name of the event

and EventHandler is the corresponding delegate.

The modifier does not need not to be public. You may choose

non-public modifiers, like private, protected, internal, and

so forth, for your event. You can also use keywords like static,

virtual, override, abstract, sealed, and new in this context.

Chapter 2 Events

35

�Demonstration 1
Now you are ready to code. Before you declare an event, you need a delegate. In the

example, you see the following line of code.

public event EventHandler MyIntChanged;

But you do not see the delegate declaration because I’m using a predefined

EventHandler delegate.

Now let’s focus on our implementation. There are two classes: Sender and Receiver.

Sender plays the role of the broadcaster; it raises the MyIntChanged event when you

change the myInt instance value. The Receiver class plays the role of the consumer. It

has a method called GetNotificationFromSender. To get notifications from the sender,

note the following line of code.

// Receiver is registering for a notification from sender

sender.MyIntChanged += receiver.GetNotificationFromSender;

Here the sender is a Sender class object, and the receiver is a Receiver class object.

Eventually, the receiver is no longer interested in getting further notifications from the

sender and unsubscribes from the event by using following code.

// Unregistering now

sender.MyIntChanged -= receiver.GetNotificationFromSender;

It’s worth noting that the sender can send notifications to itself. To demonstrate

this, inside the final lines of Main, you see the following code.

// Sender will receive its own notification now onwards

sender.MyIntChanged += sender.GetNotificationItself;

using System;

namespace EventEx1

{

 class Sender

 {

 private int myInt;

 public int MyInt

Chapter 2 Events

36

 {

 get

 {

 return myInt;

 }

 set

 {

 myInt = value;

 //Whenever we set a new value, the event will fire.

 OnMyIntChanged();

 }

 }

 �//EventHandler is a predefined delegate which is used to

//handle simple events.

 //It has the following signature:

 //delegate void System.EventHandler(object sender,System.EventArgs e)

 //where the sender tells who is sending the event and

 //EventArgs is used to store information about the event.

 public event EventHandler MyIntChanged;

 public void OnMyIntChanged()

 {

 if(MyIntChanged!=null)

 {

 MyIntChanged(this, EventArgs.Empty);

 }

 }

 public void GetNotificationItself(Object sender, System.EventArgs e)

 {

 �Console.WriteLine("Sender himself send a notification: I have

changed myInt value to {0} ", myInt);

 }

 }

 class Receiver

 {

Chapter 2 Events

37

 �public void GetNotificationFromSender(Object sender, System.

EventArgs e)

 {

 �Console.WriteLine("Receiver receives a notification: Sender

recently has changed the myInt value . ");

 }

 }

 class Program

 {

 static void Main(string[] args)

 {

 Console.WriteLine("***Exploring events.***");

 Sender sender = new Sender();

 Receiver receiver = new Receiver();

 //Receiver is registering for a notification from sender

 sender.MyIntChanged += receiver.GetNotificationFromSender;

 sender.MyInt = 1;

 sender.MyInt = 2;

 //Unregistering now

 sender.MyIntChanged -= receiver.GetNotificationFromSender;

 //No notification sent for the receiver now.

 sender.MyInt = 3;

 //Sender will receive its own notification now onwards.

 sender.MyIntChanged += sender.GetNotificationItself;

 sender.MyInt = 4;

 Console.ReadKey();

 }

 }

}

Chapter 2 Events

38

�Output
The following is the output from running this program.

Exploring events.

Receiver receives a notification: Sender recently has changed the myInt value.

Receiver receives a notification: Sender recently has changed the myInt value.

Sender himself send a notification: I have changed myInt value to 4

�Analysis
Initially, I changed the sender’s myInt value using the MyInt property. When I changed

the value to 1 or 2, the Receiver object (receiver) received notifications because it

subscribed to the event. Then the receiver unsubscribed. So, when I changed the value

to 3, there was no notification for the receiver. Then sender subscribed to the event

notification. As a result, when I changed the value to 4, the sender received a notification.

Note  In a real-world application, once you subscribe to an event, you should also
unsubscribe from the event before you leave; otherwise, you may see the impact of
memory leak.

�Q&A Session
2.1  Can I use any method on a specific event?
No. It should match the delegate signature. For example, let’s assume that the

Receiver class has another method called UnRelatedMethod, as follows.

public void UnRelatedMethod()

{

 Console.WriteLine(" An unrelated method. ");

}

In demonstration 1, if you attached this method with MyIntChanged by using the

statement

sender.MyIntChanged += receiver.UnRelatedMethod;//Error

Chapter 2 Events

39

you would get the following compile-time error:

CS0123 No overload for 'UnRelatedMethod' matches delegate 'EventHandler'

�Creating Custom Events
In demonstration 1, you saw a built-in delegate, but in many cases, you may need your

own event to handle specific scenarios. Let’s exercise a program on a custom event. To

make the example sort and simple, let’s assume that the sender does not need to send

any notification to itself. So, there is no method like GetNotificationItself in the

Sender class now.

To make the changes align with the prior example, let’s follow these steps.

	 1.	 Create a delegate. By convention, choose the delegate name with

the EventHandler suffix; something like the following:

delegate void MyIntChangedEventHandler(Object sender,

EventArgs eventArgs);

	 2.	 Define your event. As a convention, you can drop the

EventHandler suffix from the delegate name and set your

event name.

public event MyIntChangedEventHandler MyIntChanged;

	 3.	 Raise the event. Let’s use the following method in the Sender

class. In general, instead of making the method public, it is

suggested that you make the method protected virtual.

protected virtual void OnMyIntChanged()

{

 if (MyIntChanged != null)

 {

 MyIntChanged(this, EventArgs.Empty);

 }

}

Chapter 2 Events

40

	 4.	 Handle the event. Let’s use a Receiver class, which has the

following method to handle the event when it is raised. Let’s keep

it the same as in demonstration 1.

class Receiver

{

 �public void GetNotificationFromSender(Object sender,

System.EventArgs e)

 {

 �Console.WriteLine("Receiver receives a notification:

Sender recently has changed the myInt value . ");

 }

}

�Demonstration 2
Now go through the complete demonstration.

using System;

namespace EventsEx2

{

 //Step 1-Create a delegate.

 //You can pick an name (this name will be your event name)

 //which has the suffix EventHandler.For example, in the following case

 //'MyIntChanged' is the event name which has the suffix 'EventHandler'

 delegate void MyIntChangedEventHandler(Object sender, EventArgs eventArgs);

 //Create a Sender or Publisher for the event.

 class Sender

 {

 //Step-2: Create the event based on your delegate.

 public event MyIntChangedEventHandler MyIntChanged;

 private int myInt;

 public int MyInt

 {

 get

Chapter 2 Events

41

 {

 return myInt;

 }

 set

 {

 myInt = value;

 //Raise the event.

 //Whenever we set a new value, the event will fire.

 OnMyIntChanged();

 }

 }

 /*

 Step-3.

 �In the standard practise, the method name is the event name with a prefix

'On'.For example, MyIntChanged(event name) is prefixed with 'On' here.

 Also, in normal practises, instead of making the method 'public',

 you make the method 'protected virtual'.

 */

 protected virtual void OnMyIntChanged()

 {

 if (MyIntChanged != null)

 {

 MyIntChanged(this, EventArgs.Empty);

 }

 }

 }

 //Step-4: Create a Receiver or Subscriber for the event.

 class Receiver

 {

 �public void GetNotificationFromSender(Object sender, System.

EventArgs e)

 {

 �Console.WriteLine("Receiver receives a notification: Sender

recently has changed the myInt value . ");

 }

Chapter 2 Events

42

 }

 class Program

 {

 static void Main(string[] args)

 {

 Console.WriteLine("***Exploring a custom event.***");

 Sender sender = new Sender();

 Receiver receiver = new Receiver();

 //Receiver is registering for a notification from sender

 sender.MyIntChanged += receiver.GetNotificationFromSender;

 sender.MyInt = 1;

 sender.MyInt = 2;

 //Unregistering now

 sender.MyIntChanged -= receiver.GetNotificationFromSender;

 �//No notification sent for the receiver now.

 �sender.MyInt = 3;

 Console.ReadKey();

 }

 }

}

�Output

The following is the output from running this program.

Exploring a custom event.

Receiver receives a notification: Sender recently has changed the myInt value .

Receiver receives a notification: Sender recently has changed the myInt value .

�Analysis

You can see that by using the MyInt property, I’m changing the myInt value. When the

value was set to 1 or 2, there was a notification for the receiver, but when myInt value was

changed to 3, the receiver didn’t get a notification because the event notification was

unsubscribed.

Chapter 2 Events

43

�Passing Data to an Event Argument
Let’s take another look at the OnMyIntChanged method. In the previous two

demonstrations, I used the following line of code in the method.

 MyIntChanged(this, EventArgs.Empty);

I didn’t pass anything in the event argument. But in real-world programming, you

may need to pass something meaningful. Let’s analyze such a case in demonstration 3.

�Demonstration 3
In this demonstration, I followed these steps.

	 1.	 Create a subclass of EventArgs. This class has a JobNo property

to set the value of the jobNo instance variable.

	 2.	 Modify the OnMyIntChanged method to encapsulate the intended

data (which is the job number in this case) with the event. Now

the method looks like the following:

protected virtual void OnMyIntChanged()

{

 if (MyIntChanged != null)

 {

 // Combine your data with the event argument

 JobNoEventArgs jobNoEventArgs = new JobNoEventArgs();

 jobNoEventArgs.JobNo = myInt;

 MyIntChanged(this, jobNoEventArgs);

 }}

	 3.	 I kept the steps same in this demonstration.

Here is the full demonstration.

using System;

namespace EventsEx3

{

 // Create a subclass of System.EventArgs

Chapter 2 Events

44

 class JobNoEventArgs : EventArgs

 {

 int jobNo = 0;

 public int JobNo

 {

 get { return jobNo; }

 set { jobNo = value; }

 }

 }

 // Create a delegate.

 �delegate void MyIntChangedEventHandler(Object sender, JobNoEventArgs

eventArgs);

 // Create a Sender or Publisher for the event.

 class Sender

 {

 // Create the event based on your delegate.

 public event MyIntChangedEventHandler MyIntChanged;

 private int myInt;

 public int MyInt

 {

 get

 {

 return myInt;

 }

 set

 {

 myInt = value;

 // Raise the event.

 // Whenever you set a new value, the event will fire.

 OnMyIntChanged();

 }

 }

Chapter 2 Events

45

 /*

In the standard practise, the method name is the event name with a prefix

'On'.For example, MyIntChanged(event name) is prefixed with 'On' here.Also,

in normal practises, instead of making the method 'public',you make the

method 'protected virtual'.

 */

 protected virtual void OnMyIntChanged()

 {

 if (MyIntChanged != null)

 { // Combine your data with the event argument

 JobNoEventArgs jobNoEventArgs = new JobNoEventArgs();

 jobNoEventArgs.JobNo = myInt;

 MyIntChanged(this, jobNoEventArgs);

 }

 }

 }

 // Create a Receiver or Subscriber for the event.

 class Receiver

 {

 public void GetNotificationFromSender(Object sender, JobNoEventArgs e)

 {

 �Console.WriteLine("Receiver receives a notification: Sender

recently has changed the myInt value to {0}.",e.JobNo);

 }

 }

 class Program

 {

 static void Main(string[] args)

 {

 Console.WriteLine("***Passing data in the event argument.***");

 Sender sender = new Sender();

 Receiver receiver = new Receiver();

 // Receiver is registering for a notification from sender

 sender.MyIntChanged += receiver.GetNotificationFromSender;

 sender.MyInt = 1;

Chapter 2 Events

46

 sender.MyInt = 2;

 // Unregistering now

 sender.MyIntChanged -= receiver.GetNotificationFromSender;

 // No notification sent for the receiver now.

 sender.MyInt = 3;

 Console.ReadKey();

 }

 }

}

�Output

The following is the output from running this program.

Passing data in the event argument.

Receiver receives a notification: Sender recently has changed the myInt

value to 1.

Receiver receives a notification: Sender recently has changed the myInt

value to 2.

�Using Event Accessors
Let’s make some interesting changes to demonstration 3. Instead of using

public event MyIntChangedEventHandler MyIntChanged;

use the following segment of code.

private MyIntChangedEventHandler myIntChanged;

public event MyIntChangedEventHandler MyIntChanged

{

 add

 {

 myIntChanged += value;

Chapter 2 Events

47

 }

 remove

 {

 myIntChanged -= value;

 }

}

To accommodate this change, let’s update the OnMyIntChanged method as follows.

protected virtual void OnMyIntChanged()

{

 if (myIntChanged != null)

 {

 // Combine your data with the event argument

 JobNoEventArgs jobNoEventArgs = new JobNoEventArgs();

 jobNoEventArgs.JobNo = myInt;

 myIntChanged(this, jobNoEventArgs);

 }

}

Now if you execute the program, you receive the same output. How is this possible?

The compiler works in a way that is similar to when you declared the event. Let’s go back

to the fundamentals of events.

An event is a special kind of multicast delegate, and you can invoke it only from the

class that contains the event. A receiver can subscribe to the event, and it handles the

event with a method in it. So, the receiver passes the method reference when subscribing

to the event. As a result, this method is added to the delegate’s subscription list through

event accessors. These event accessors are similar to property accessors except they are

named add and remove.

Normally, you do not need to supply custom event accessors. But when you define

them, you are instructing the C# compiler to not generate the default field and accessors

for you.

At the time of writing, applications based on the .NET Framework target C# 7.3;

whereas .NET Core applications target C# 8.0. If you execute the same program in the

.NET Framework (let’s rename it EventEx3DotNetFramework) and investigate the IL code,

you will notice the presence of add_<EventName> and remove_<EventName> in the IL

code. Figure 2-1 is a partial screenshot of the IL code.

Chapter 2 Events

48

�Demonstration 4
Let’s go through a complete demonstration, which is as follows.

using System;

namespace EventsEx4

{

 //Create a subclass of System.EventArgs

 class JobNoEventArgs : EventArgs

 {

 int jobNo = 0;

 public int JobNo

 {

 get { return jobNo; }

 set { jobNo = value; }

 }

 }

 // Create a delegate.

 �delegate void MyIntChangedEventHandler(Object sender, JobNoEventArgs

eventArgs);

 // Create a Sender or Publisher for the event.

 class Sender

Figure 2-1.  Partial screenshot of IL code

Chapter 2 Events

49

 {

 // Create the event based on your delegate.

 #region equivalent code

 // public event MyIntChangedEventHandler MyIntChanged;

 private MyIntChangedEventHandler myIntChanged;

 public event MyIntChangedEventHandler MyIntChanged

 {

 add

 {

 �Console.WriteLine("***Inside add accessor.Entry

point.***");

 myIntChanged += value;

 }

 remove

 {

 myIntChanged -= value;

 �Console.WriteLine("***Inside remove accessor.Exit point.***");

 }

 }

 #endregion

 private int myInt;

 public int MyInt

 {

 get

 {

 return myInt;

 }

 set

 {

 myInt = value;

 // Raise the event.

 // Whenever we set a new value, the event will fire.

 OnMyIntChanged();

 }

 }

Chapter 2 Events

50

 protected virtual void OnMyIntChanged()

 {

 // if (MyIntChanged != null)

 if (myIntChanged != null)

 {

 // Combine your data with the event argument

 JobNoEventArgs jobNoEventArgs = new JobNoEventArgs();

 jobNoEventArgs.JobNo = myInt;

 // MyIntChanged(this, jobNoEventArgs);

 myIntChanged(this, jobNoEventArgs);

 }

 }

 }

 // Create a Receiver or Subscriber for the event.

 class Receiver

 {

 public void GetNotificationFromSender(Object sender, JobNoEventArgs e)

 {

 �Console.WriteLine("Receiver receives a notification: Sender

recently has changed the myInt value to {0}.", e.JobNo);

 }

 }

 class Program

 {

 static void Main(string[] args)

 {

 Console.WriteLine("***Using event accessors.***");

 Sender sender = new Sender();

 Receiver receiver = new Receiver();

 // Receiver is registering for a notification from sender

 sender.MyIntChanged += receiver.GetNotificationFromSender;

 sender.MyInt = 1;

 sender.MyInt = 2;

 // Unregistering now

 sender.MyIntChanged -= receiver.GetNotificationFromSender;

Chapter 2 Events

51

 // No notification sent for the receiver now.

 sender.MyInt = 3;

 Console.ReadKey();

 }

 }

}

�Output

The following is the output from running this program.

Using event accessors.

Inside add accessor.Entry point.

Receiver receives a notification: Sender recently has changed the myInt

value to 1.

Receiver receives a notification: Sender recently has changed the myInt

value to 2.

Inside remove accessor.Exit point.

�Analysis

When you use event accessors, keep in mind one important suggestion: implement the

locking mechanism. For example, demonstration 4 can be improved when you write the

following segment of code.

public object lockObject = new object();

private MyIntChangedEventHandler myIntChanged;

public event MyIntChangedEventHandler MyIntChanged

{

 add

 {

 lock (lockObject)

 {

 Console.WriteLine("***Inside add accessor.Entry point.***");

 myIntChanged += value;

 }

 }

Chapter 2 Events

52

 remove

 {

 lock (lockObject)

 {

 myIntChanged -= value;

 Console.WriteLine("***Inside remove accessor.Exit point.***");

 }

 }

 }

�Q&A Session
2.2  What are the key benefits of using user-defined event accessors?
Let’s take a closer look at the following segment of code.

 private MyIntChangedEventHandler myIntChanged;

 public event MyIntChangedEventHandler MyIntChanged

 {

 add

 {

 myIntChanged += value;

 }

 remove

 {

 myIntChanged -= value;

 }

 }

Note that these event accessors are similar to property accessors, except they are

named add and remove. Here you use a property-like wrapper around your delegate. As

a result, only the containing class can invoke the delegate directly; outsiders cannot do

this. This promotes better security and control over your code.

Chapter 2 Events

53

�Handling Interface Events
An interface can contain events. You need to follow the same rule when you

implement an interface method or a property. The following example shows such an

implementation.

�Demonstration 5
In this example, IMyInterface has a MyIntChanged event. I used Sender and Receiver,

which are identical to prior examples. The only difference is that this time, the Sender

class is implementing the IMyInterface interface.

using System;

namespace EventEx5

{

 interface IMyInterface

 {

 // An interface event

 event EventHandler MyIntChanged;

 }

 class Sender : IMyInterface

 {

 // Declare the event here and raise from your intended location

 public event EventHandler MyIntChanged;

 private int myInt;

 public int MyInt

 {

 get

 {

 return myInt;

 }

 set

 {

 // Setting a new value prior to raise the event.

 myInt = value;

Chapter 2 Events

54

 OnMyIntChanged();

 }

 }

 protected virtual void OnMyIntChanged()

 {

 if (MyIntChanged != null)

 {

 MyIntChanged(this, EventArgs.Empty);

 }

 }

 }

 class Receiver

 {

 �public void GetNotificationFromSender(Object sender, System.

EventArgs e)

 {

 �Console.WriteLine("Receiver receives a notification: Sender

recently has changed the myInt value . ");

 }

 }

 class Program

 {

 static void Main(string[] args)

 {

 �Console.WriteLine("***Exploring an event with an

interface.***");

 Sender sender = new Sender();

 Receiver receiver = new Receiver();

 // Receiver is registering for a notification from sender

 sender.MyIntChanged += receiver.GetNotificationFromSender;

 sender.MyInt = 1;

 sender.MyInt = 2;

 // Unregistering now

 sender.MyIntChanged -= receiver.GetNotificationFromSender;

Chapter 2 Events

55

 // No notification sent for the receiver now.

 sender.MyInt = 3;

 Console.ReadKey();

 }

 }

}

�Output

The following is the output from running this program.

Exploring an event with an interface.

Receiver receives a notification: Sender recently has changed the myInt value .

Receiver receives a notification: Sender recently has changed the myInt value .

�Q&A Session
2.3  How can my class implement multiple interfaces when the interface events

have the same name?
Yes, this situation is interesting. When your class implements multiple interfaces that

have events with a common name, you need to follow explicit interface implementation

techniques. But there is one important restriction that says that in a case like this, you

need to supply add and remove event accessors. Normally, the compiler can supply

these accessors, but in this case, it cannot. The following section provides a complete

demonstration.

�Handling Explicit Interface Events
To keep things simple, this example aligns with previous examples. Let’s assume that

now you have two interfaces: IBeforeInterface and IAfterInterface. Further assume

that each contains an event called MyIntChanged.

The Sender class implements these interfaces. Now you have two receivers:

ReceiverBefore and ReceiverAfter. These Receiver classes want to get notifications

when myInt is changed. In this example, a ReceiverBefore object gets notification prior

to a myInt change, and a ReceiverAfter object gets the notification after a myInt change.

Chapter 2 Events

56

You saw how to implement event accessors in demonstration 4. The same

mechanism is followed here. This time, I followed Microsoft’s recommendation, so you

see the use of locks inside event accessors.

�Demonstration 6
Go through the following complete demonstration.

using System;

namespace EventEx6

{

 interface IBeforeInterface

 {

 public event EventHandler MyIntChanged;

 }

 interface IAfterInterface

 {

 public event EventHandler MyIntChanged;

 }

 class Sender : IBeforeInterface, IAfterInterface

 {

 // Creating two separate events for two interface events

 public event EventHandler BeforeMyIntChanged;

 public event EventHandler AfterMyIntChanged;

 // Microsoft recommends this, i.e. to use a lock inside accessors

 object objectLock = new Object();

 private int myInt;

 public int MyInt

 {

 get

 {

 return myInt;

 }

Chapter 2 Events

57

 set

 {

 // Fire an event before we make a change to myInt.

 OnMyIntChangedBefore();

 �Console.WriteLine("Making a change to myInt from {0} to

{1}.",myInt,value);

 myInt = value;

 // Fire an event after we make a change to myInt.

 OnMyIntChangedAfter();

 }

 }

 // Explicit interface implementation required.

 // Associate IBeforeInterface's event with

 // BeforeMyIntChanged

 event EventHandler IBeforeInterface.MyIntChanged

 {

 add

 {

 lock (objectLock)

 {

 BeforeMyIntChanged += value;

 }

 }

 remove

 {

 lock (objectLock)

 {

 BeforeMyIntChanged -= value;

 }

 }

 }

 // Explicit interface implementation required.

 // Associate IAfterInterface's event with

 // AfterMyIntChanged

Chapter 2 Events

58

 event EventHandler IAfterInterface.MyIntChanged

 {

 add

 {

 lock (objectLock)

 {

 AfterMyIntChanged += value;

 }

 }

 remove

 {

 lock (objectLock)

 {

 AfterMyIntChanged -= value;

 }

 }

 }

 // This method uses BeforeMyIntChanged event

 protected virtual void OnMyIntChangedBefore()

 {

 if (BeforeMyIntChanged != null)

 {

 BeforeMyIntChanged(this, EventArgs.Empty);

 }

 }

 // This method uses AfterMyIntChanged event

 protected virtual void OnMyIntChangedAfter()

 {

 if (AfterMyIntChanged != null)

 {

 AfterMyIntChanged(this, EventArgs.Empty);

 }

 }

 }

Chapter 2 Events

59

 // First receiver: ReceiverBefore class

 class ReceiverBefore

 {

 �public void GetNotificationFromSender(Object sender, System.

EventArgs e)

 {

 �Console.WriteLine("ReceiverBefore receives : Sender is about to

change the myInt value . ");

 }

 }

 // Second receiver: ReceiverAfter class

 class ReceiverAfter

 {

 �public void GetNotificationFromSender(Object sender, System.

EventArgs e)

 {

 �Console.WriteLine("ReceiverAfter receives : Sender recently has

changed the myInt value . ");

 }

 }

 class Program

 {

 static void Main(string[] args)

 {

 Console.WriteLine("***Handling explicit interface events.***");

 Sender sender = new Sender();

 ReceiverBefore receiverBefore = new ReceiverBefore();

 ReceiverAfter receiverAfter = new ReceiverAfter();

 �// Receiver's are registering for getting

//notifications from Sender

 �sender.BeforeMyIntChanged += receiverBefore.

GetNotificationFromSender;

 �sender.AfterMyIntChanged += receiverAfter.

GetNotificationFromSender;

Chapter 2 Events

60

 sender.MyInt = 1;

 Console.WriteLine("");

 sender.MyInt = 2;

 // Unregistering now

 �sender.BeforeMyIntChanged -= receiverBefore.

GetNotificationFromSender;

 �sender.AfterMyIntChanged -= receiverAfter.

GetNotificationFromSender;

 Console.WriteLine("");

 // No notification sent for the receivers now.

 sender.MyInt = 3;

 Console.ReadKey();

 }

 }

}

�Output

The following is the output from running this program.

Handling explicit interface events.

ReceiverBefore receives : Sender is about to change the myInt value .

Making a change to myInt from 0 to 1.

ReceiverAfter receives : Sender recently has changed the myInt value .

ReceiverBefore receives : Sender is about to change the myInt value .

Making a change to myInt from 1 to 2.

ReceiverAfter receives : Sender recently has changed the myInt value .

Making a change to myInt from 2 to 3.

�Q&A Session
2.4  Delegates are the backbone for events, and in general, we follow an observer

design pattern when we write code for events and register and unregister those
events. Is this correct?

Yes.

Chapter 2 Events

61

2.5  In the beginning of the chapter, you said I can also use the “new” keyword
when I write a program on an event. Can you give an example?

I basically used the short form. For example, in demonstration 1, you saw the

following line of code when I registered the event.

sender.MyIntChanged += receiver.GetNotificationFromSender;

Now if you recall the short form used in the context of delegates from Chapter 1, you

can write equivalent code, as follows.

sender.MyIntChanged += new EventHandler(receiver.

GetNotificationFromSender);

Apart from this, consider another case in which your Sender class contains a sealed

event. If you have a derived class of Sender, it cannot use the event. Instead, the derived

class can use the “new” keyword to indicate that it is not overriding the base class event.

2.6  Can you give an example of an abstract event?
See demonstration 7.

�Demonstration 7
Microsoft says that for an abstract event, you do not get compiler-generated add

and remove event accessor blocks. So, your derived class needs to provide its own

implementation. Let’s make it simple and modify demonstration 1 slightly. Like

demonstration 2, let’s assume that in this example, the sender does not need to send

notifications to itself. The GetNotificationItself method is absent inside the Sender

class in this demonstration.

Now let’s focus on the key part. The Sender class contains an abstract event, which is

as follows.

public abstract event EventHandler MyIntChanged;

Since the class contains an abstract event, the class itself becomes abstract.

I’ll now introduce another class, called ConcreteSender, which derives from Sender.

It overrides the event and completes the event invocation process.

Chapter 2 Events

62

Here is the implementation of ConcreteSender.

 class ConcreteSender : Sender

 {

 public override event EventHandler MyIntChanged;

 protected override void OnMyIntChanged()

 {

 if (MyIntChanged != null)

 {

 MyIntChanged(this, EventArgs.Empty);

 }

 }

 }

Now let’s go through the complete program and output.

using System;

namespace EventsEx7

{

 abstract class Sender

 {

 private int myInt;

 public int MyInt

 {

 get

 {

 return myInt;

 }

 set

 {

 myInt = value;

 // Whenever we set a new value, the event will fire.

 OnMyIntChanged();

 }

 }

Chapter 2 Events

63

 // Abstract event.The containing class becomes abstract for this.

 public abstract event EventHandler MyIntChanged;

 protected virtual void OnMyIntChanged()

 {

 Console.WriteLine("Sender.OnMyIntChanged");

 }

 }

 class ConcreteSender : Sender

 {

 public override event EventHandler MyIntChanged;

 protected override void OnMyIntChanged()

 {

 if (MyIntChanged != null)

 {

 MyIntChanged(this, EventArgs.Empty);

 }

 }

 }

class Receiver

{

 public void GetNotificationFromSender(Object sender, System.EventArgs e)

 {

 �Console.WriteLine("Receiver receives a notification: Sender

recently has changed the myInt value . ");

 }

}

class Program

{

 static void Main(string[] args)

 {

 Console.WriteLine("***Exploring an abstract event.***");

 Sender sender = new ConcreteSender();

 Receiver receiver = new Receiver();

 // Receiver is registering for a notification from sender

Chapter 2 Events

64

 sender.MyIntChanged += receiver.GetNotificationFromSender;

 sender.MyInt = 1;

 sender.MyInt = 2;

 // Unregistering now

 sender.MyIntChanged -= receiver.GetNotificationFromSender;

 // No notification sent for the receiver now.

 sender.MyInt = 3;

 Console.ReadKey();

 }

}}

�Output

The following is the output from running this program.

Exploring an abstract event.

Receiver receives a notification: Sender recently has changed the myInt

value .

Receiver receives a notification: Sender recently has changed the myInt

value .

�Q&A Session
2.7  I understand that EventHandler is a predefined delegate. But in many places,

I’ve seen people using the term event handler in a broad sense. Is there any special
meaning associated with it?

Simply put, an event handler is a procedure, and you decide what to do when a

specific event is raised. For example, when a user clicks a button in a GUI application. It

is important to note that your event can have multiple handlers, and at the same time,

the method that handles the event can also change dynamically. In this chapter, you

saw how events work, and particularly, how a Receiver class handles events. But if you

use a ready-made construct like Windows Form Designer in Visual Studio, you can code

events very easily.

2.8  It would be helpful to have an example of how to add an event handler in a
GUI application.

Let’s look at demonstration 8.

Chapter 2 Events

65

�Demonstration 8
In this demonstration, I create a simple UI application to demonstrate a simple event

handling mechanism. The steps to do it are as follows.

	 1.	 Create a Windows Form app.

	 2.	 From the Toolbox, drag a button onto the form. Let’s name it Test.

Figure 2-2 shows what it may look like.

	 3.	 Select the button. Open the Properties window and click the

Events button. Name the Click event TestBtnClickHandler

(see Figure 2-3).

Figure 2-2.  Test button placed on Form1

Chapter 2 Events

66

	 4.	 Double-click the Test button. This opens the Form1.cs file, in

which you can write the following code for your event handler.

private void TestBtnClickHandler(object sender, EventArgs e)

{

 MessageBox.Show("Hello Reader.");

}

�Output

Run your application and click the Test button. You see the output shown in Figure 2-4.

(To take a better screenshot, I dragged the message box window on Form1.)

Figure 2-3.  Setting the Click event name as TestBtnClickHandler

Chapter 2 Events

67

Note  Demonstration 8 was executed in .NET Framework but not in .NET
Core. At the time of writing, Visual Designer was labeled as a “preview feature”
for .NET Core applications, and it was suffering from a lot of issues (For more
information, go to https://github.com/dotnet/winforms/blob/master/
Documentation/designer-releases/0.1/knownissues.md). When you
click the Form1.cs file in Solution Explorer, you cannot see Form1.cs[Design] in a
.NET Core application.

�Final Words
In demonstration 2, you saw the following code segment.

if (MyIntChanged != null)

{

 MyIntChanged(this, EventArgs.Empty);

}

Figure 2-4.  Output screenshot from Visual Studio when you click the Test
button

Chapter 2 Events

https://github.com/dotnet/winforms/blob/master/Documentation/designer-releases/0.1/knownissues.md
https://github.com/dotnet/winforms/blob/master/Documentation/designer-releases/0.1/knownissues.md

68

Actually, you see this kind of null check before raising your event in all examples.

This is important, because if there is no listener (or receiver) for the event, you may

encounter with an exception called NullReferenceException. In such cases, Visual

Studio shows you the screen shown in Figure 2-5.

A null check is important prior to raising an event. But you can assume that in a real-

world application, if you need to do several null checks, it’ll make your code clumsy. In

that case, you can use a feature available since C# 6.0. You can use the null conditional

operator to avoid sudden surprises.

I provide an alternate code segment using this operator. (I kept the dead code with

comments so that you can compare both code segments at the same time).

//if (MyIntChanged != null)

//{

// MyIntChanged(this, EventArgs.Empty);

//}

//Alternate code

MyIntChanged?.Invoke(this, EventArgs.Empty);

Figure 2-5.  A NullReferenceException occurred due to the absence of event
listeners and the proper null check

Chapter 2 Events

69

This is all about events. Now lets move on to Chapter 3, where you learn to use

another powerful feature in C#: lambda expressions.

�Summary
This chapter addressed the following key questions.

•	 What is an event? How do you use the built-in support for events?

•	 How do you write a custom event?

•	 How do you pass data to your event argument?

•	 How do you use event accessors? Why are they useful?

•	 How do you use different interface events?

•	 How do you apply different modifiers and keywords to an event?

•	 How can you implement an event handling mechanism in a simple

UI application?

Chapter 2 Events

71
© Vaskaran Sarcar 2020
V. Sarcar, Getting Started with Advanced C#, https://doi.org/10.1007/978-1-4842-5934-4_3

CHAPTER 3

Lambda Expressions
Lambda expressions and anonymous methods are two important concepts in advanced

programming. Collectively, they are often referred to as anonymous functions. The

concept of anonymous methods came in C# 2.0, and lambda expressions were

introduced in C# 3.0. Over time, lambda expressions became more popular than

anonymous methods. If you target .NET Framework 3.5 or later, it is recommended

that you use lambda expressions. This chapter shows you different ways to use lambda

expressions and how they are used effectively in advanced programming.

�The Usefulness of Lambda Expressions
A lambda expression is an anonymous method written in a form that is easily

readable. What is an anonymous method and why is it useful? As the name suggests,

an anonymous method is a method that does not have a name. In certain situations,

they are very helpful. For example, when you point a method using a delegate but the

method is present in a different location in the source file (or, in an extreme case, it is

in a different source file). This segregated code is difficult to understand, debug, and

maintain. In such situations, anonymous methods are helpful because you can define an

“in-line” method without a name to serve your purpose.

The word lambda comes from lambda calculus, which simulates a Turing machine.

It is spelled with the Greek letter lambda (λ), which your keyboard does not have. To

denote a lambda operator, you use the => symbols. The left side of the operator specifies

the input parameters (if any) and the right side of the operator specifies either an

expression or a statement block. The => is right associative, and its precedence is the

same as =. When reading code that contains a lambda operator, you replace the lambda

operator with goes to, go to, arrow, or become(s). For example, you read x=> x+5; as x

goes to x+5. Similarly, you read (x,y)=>x+y; as x and y go to x+y.

https://doi.org/10.1007/978-1-4842-5934-4_3#ESM

72

The C# compiler can convert a lambda expression to either a delegate instance or an

expression tree (it is often used in LINQ). This book does not discuss LINQ in detail, but

you have learned about delegates and saw several examples on them in Chapter 1. Let’s

focus on delegate instances here.

Note  When a lambda expression is converted to a delegate type, the result
depends on the input parameters and return type. If a lambda expression doesn’t
have a return type, it can be converted to one of the Action delegates types; if it
has a return type, it can be converted to one of the Func delegate types. Func and
Action are generic delegates, which you learn about in Chapter 4.

�Demonstration 1
I start with a simple program that calculates the sum of two integers (21 and 79) by using

various approaches. The first approach uses a normal method (which you are familiar

with). You can use this method to calculate the sum of the ints. Next, I show you how to

use a delegate instance to do the same. The last two segments of code show you the use

of an anonymous method and a lambda expression, respectively. Each program segment

generates the same output. The program lets you choose the approach. For readability,

go through the supportive comments.

using System;

namespace LambdaExpressionEx1

{

 public delegate int Mydel(int x, int y);

 class Program

 {

 public static int Sum(int a, int b) { return a + b; }

 static void Main(string[] args)

 {

 �Console.WriteLine("***Exploring the use of a lambda expression

and comparing it with other techniques. ***");

Chapter 3 Lambda Expressions

73

 // Without using delgates or lambda expression

 Console.WriteLine(" Using a normal method.");

 int a = 21, b = 79;

 �Console.WriteLine(" Invoking the Sum() method in a common way

without using a delegate.");

 Console.WriteLine("Sum of {0} and {1} is : {2}", a,b, Sum(a, b));

 /* Using Delegate(Initialization with a named method)*/

 Mydel del1 = new Mydel(Sum);

 Console.WriteLine("\n Using delegate now.");

 �Console.WriteLine("Invoking the Sum() method with the use of a

delegate.");

 Console.WriteLine("Sum of {0} and {1} is : {2}", a, b, del1(a, b));

 // Using Anonymous method (C# 2.0 onwards)

 Mydel del2 = delegate (int x, int y) { return x + y; };

 Console.WriteLine("\n Using anonymous method now.");

 �Console.WriteLine("Invoking the Sum() method using an anonymous

method.");

 Console.WriteLine("Sum of {0} and {1} is : {2}", a, b, del2(a, b));

 // Using Lambda expression(C# 3.0 onwards)

 Console.WriteLine("\n Using lambda expression now.");

 Mydel sumOfTwoIntegers = (x, y) => x + y;

 �Console.WriteLine("Sum of {0} and {1} is : {2}", a, b,

sumOfTwoIntegers(a, b));

 Console.ReadKey();

 }

 }

}

�Output

The following is the output from running this program.

***Exploring the use of a lambda expression and comparing it with other

techniques.***

Using a normal method.

Chapter 3 Lambda Expressions

74

Invoking the Sum() method in a common way without using a delegate.

Sum of 21 and 79 is : 100

 Using delegate now.

Invoking the Sum() method with the use of a delegate.

Sum of 21 and 79 is : 100

 Using anonymous method now.

Invoking the Sum() method using an anonymous method.

Sum of 21 and 79 is : 100

 Using lambda expression now.

Sum of 21 and 79 is : 100

�Analysis

Let’s review the statements used for the anonymous method and the lambda expression.

For the anonymous method, I used

delegate (int x, int y) { return x + y; };

For the lambda expression, I used

(x, y) => x + y;

If you are familiar with anonymous methods but not lambda expressions, you can

use the following steps to get a lambda expression from an anonymous method.

For step 1, remove the delegate keyword from the anonymous method expression,

which results in what’s shown in Figure 3-1.

That is, you get (int x, int y) {return x + y; };.

In step 2, add a lambda operator, which results in what’s shown in Figure 3-2. (It also

results in a valid lambda expression.)

Figure 3-1.  Removing the delegate keyword from the anonymous method
expression

Chapter 3 Lambda Expressions

75

Notice that in this case, I am dealing with a single return statement. In a case like

this, as step 3, you can remove curly braces, semicolons, and the return, which results in

what’s shown in Figure 3-3 (it is a valid lambda statement).

That is, you get: (int x, int y) => x + y;

In most cases, compilers can identify the input parameters and return type when it

deals with a lambda expression. In programming terms, this is called type inference. Still,

in some special cases, you may need to keep this type information to let the compiler

evaluate the expression properly. But this is a very simple case, and the compiler can

understand it properly (in this context, note the delegate declaration), even if you do not

mention the type of the input parameters. As a result, for step 4, you can remove that

type information from input parameters and make the expression shorter, as shown in

Figure 3-4.

That is, you get (x, y) => x + y;.

Figure 3-2.  Adding the lambda operator in step1 expression

Figure 3-3.  Removing curly braces, semicolons, and “return” from the expression
in step 2

Figure 3-4.  Removing type info from the expression in step 3 to get the shortest
expression

Chapter 3 Lambda Expressions

76

�Lambda Expression with (and Without) Parameters
A lambda expression can accept one or multiple parameters. You can also use a lambda

expression that does not accept any parameters.

In demonstration 1, you saw that when a lambda expression uses multiple

parameters, you list them in parentheses separated by commas, like (x, y)=> x+y;.

If a lambda expression accepts only one parameter, you can omit the parentheses.

For example, you can use either (x)=> x*x; or x=>x*x;. Both serve the same purpose.

Finally, () => Console.WriteLine("No parameter."); is an example of a lambda

expression that does not have any parameters. Demonstration 2 features all the cases.

�Demonstration 2
This demonstration covers the usage of lambda expressions with different parameters.

using System;

namespace LambdaExpTest2

{

 class Program

 {

 public delegate void DelegateWithNoParameter();

 public delegate int DelegateWithOneIntParameter(int x);

 public delegate void DelegateWithTwoIntParameters(int x, int y);

 static void Main(string[] args)

 {

 �Console.WriteLine("***Experimenting lambda expressions with

different parameters.***\n");

 // Without lambda exp.

 Method1(5, 10);

 // Using Lambda expression

 �DelegateWithNoParameter delWithNoParam = () => Console.

WriteLine("Using lambda expression with no parameter, printing

Hello");

 delWithNoParam();

Chapter 3 Lambda Expressions

77

 DelegateWithOneIntParameter delWithOneIntParam = (x) => x * x;

 �Console.WriteLine("\nUsing a lambda expression with one

parameter, square of 5 is {0}", delWithOneIntParam(5));

 DelegateWithTwoIntParameters delWithTwoIntParam = (int x, int y) =>

 {

 �Console.WriteLine("\nUsing lambda expression with two

parameters.");

 �Console.WriteLine("It is called a statement lambda

because it has a block of statements in it's body.");

 Console.WriteLine("This lambda accepts two parameters.");

 int sum = x + y;

 Console.WriteLine("Sum of {0} and {1} is {2}", x, y, sum);

 };

 delWithTwoIntParam(10,20);

 Console.ReadKey();

 }

 private static void Method1(int a, int b)

 {

 Console.WriteLine("\nThis is Method1() without lambda expression.");

 int sum = a + b;

 Console.WriteLine("Sum of {0} and {1} is {2}", a, b, sum);

 }

 }

}

�Output

The following is the output from running this program.

Experimenting lambda expressions with different parameters.

This is Method1() without lambda expression.

Sum of 5 and 10 is 15

Using lambda expression with no parameter, printing Hello

Chapter 3 Lambda Expressions

78

Using a lambda expression with one parameter, square of 5 is 25

Using lambda expression with two parameters.

It is called a statement lambda because it has a block of statements in

it's body.

This lambda accepts two parameters.

Sum of 10 and 20 is 30

�Types of Lambda Expressions
Ideally, lambda expressions are used for the single-line methods. But in demonstration 2,

you saw that a lambda expression can be more than one line.

In programming terms, you categorize lambda expressions as expression lambdas

and statement lambdas. An expression lambda has a single expression, whereas a

statement lambda contains a block of statements. Statement lambdas may use curly

braces, semicolons, and return statements. A statement lambda can contain any number

of statements, but in general, they contain two or three statements. If you use more than

three lines in a lambda expression, it may complicate its understanding; in those cases,

you may prefer a normal method over a lambda expression.

�Expression-Bodied Members
Lambda expressions first appeared in C# 3.0, but starting in C# 6.0, they offered

additional flexibility: if you have a non-lambda method inside a class, you can use

the same expression syntax to define the same method. For example, in the following

demonstration, there is a class called Test.

 class Test

 {

 public int CalculateSum1(int a, int b)

 {

 int sum = a + b;

 return sum;

 }

Chapter 3 Lambda Expressions

79

 // Expression-bodied method is not available in C#5

 public int CalculateSum2(int a, int b) => a + b; // ok

 }

Note the non-lambda method CalculateSum1. It is a simple method that accepts two

ints, calculates their sum, and returns the result (which is also an int).

Since C# 6.0 onward, you can write a lambda expression to define an equivalent

version of CalculateSum1. The following is such an expression.

public int CalculateSum2(int a, int b) => a + b;

If you use this in a C# version prior to C# 6.0 (say, in C# 5.0), you get the following

compile-time error.

CS8026: Feature 'expression-bodied method' is not available in C# 5. Please

use language version 6 or greater.

Figure 3-5 is a Visual Studio IDE screenshot for your reference.

I kept the comments to help you understand. But it is important to note that you can

use this concept when your method can be expressed with a single expression (i.e., there

is only one line of code in the method implementation). In other words, it is applicable

to expression lambda syntax, but you cannot use it for statement lambda syntax. In

demonstration 3, if you uncomment the following code segment, you get a compile-time

error.

//int CalculateSum3(int a, int b) =>{

// int sum = a + b;

// return sum;

//}

Figure 3-5.  Feature ‘expression-bodied method’ is not available in C# 5

Chapter 3 Lambda Expressions

80

�Demonstration 3
This complete demonstration shows the use of an expression-bodied method.

using System;

namespace ExpressionBodiedMethodDemo

{

 class Test

 {

 public int CalculateSum1(int a, int b)

 {

 int sum = a + b;

 return sum;

 }

 /*

 Expression-bodied method is not available in C#5.

 �C#6.0 onwards,you can use same expression syntax to define a

non-lambda method within a class

 It is ok for single expression, i.e. for

 expression lambda syntax,but not for statement lambda.

 */

 public int CalculateSum2(int a, int b) => a + b;//ok

 // Following causes compile-time error

 // For expression-bodied methods, you cannot use

 // statement lambda

 //int CalculateSum3(int a, int b) =>{

 // int sum = a + b;

 // return sum;

 //}

 }

Chapter 3 Lambda Expressions

81

 class Program

 {

 static void Main(string[] args)

 {

 �Console.WriteLine("***Experimenting lambda expression with

expression-bodied method.***\n");

 // Using Normal method

 Test test = new Test();

 int result1 = test.CalculateSum1(5, 7);

 �Console.WriteLine("\nUsing a normal method, CalculateSum1(5, 7)

results: {0}", result1);

 // Using expression syntax

 int result2 = test.CalculateSum2(5, 7);

 �Console.WriteLine("\nUsing expression syntax for

CalculateSum2(5,7),result is: {0}", result2);

 Console.ReadKey();

 }

 }

}

�Output

The following is the output from running this program.

Experimenting lambda expression with expression-bodied method.

Using a normal method, CalculateSum1(5, 7) results: 12

Using expression syntax for CalculateSum2(5,7),result is: 12

POINTS TO REMEMBER

Expression syntax to define non-lambda methods are not applicable for statement lambdas.

You can use it only for expression lambdas.

Chapter 3 Lambda Expressions

82

�Demonstration 4
Demonstration 3 showed you the use of an expression-bodied method, but it is also

applicable to properties, constructors, and finalizers. In demonstration 4, you see how it

is used with a constructor, a read-only property, and a read-write property. So, let’s focus

on the important segments of code and compare them with the usual implementations.

Suppose that you have an Employee class in which there is employee ID, company

name, and employee name. In the code, I represented them as empId, company, and

name, respectively. You supply the empId when you initialize an Employee object. Company

is a read-only property and Name is a read-write property.

The following is the usual implementation of the public constructor, which takes

only one argument.

public Employee(int id)

{

 empId = id;

}

The following shows the expression-bodied constructor.

public Employee(int id) => empId = id;

Here is the usual implementation of the read-only Company property.

public string Company

{

 get

 {

 return company;

 }

}

The following shows the expression-body definition of the read-only property.

public string Company => company;

Chapter 3 Lambda Expressions

83

Here is the usual implementation of the read-write Name property.

public string Name

{

 get

 {

 return name;

 }

 set

 {

 name = value;

 }

}

The following shows the expression-body definition of the read-write property.

public string Name

 {

 get => name;

 set => name = value;

 }

Let’s go through the complete demonstration and output, which are as follows.

using System;

namespace Expression_BodiedPropertiesDemo

{

 class Employee

 {

 private int empId;

 private string company = "XYZ Ltd.";

 private string name = String.Empty;

 //Usual implementation of a constructor.

 //public Employee(int id)

 //{

 // empId = id;

 //}

Chapter 3 Lambda Expressions

84

 //Following shows an expression-bodied constructor

 public Employee(int id) => empId = id;//ok

 //Usual implementation of a read-only property

 //public string Company

 //{

 // get

 // {

 // return company;

 // }

 //}

 //Read-only property.C#6.0 onwards.

 public string Company => company;

 //Usual implementation

 //public string Name

 //{

 // get

 // {

 // return name;

 // }

 // set

 // {

 // name = value;

 // }

 //}

 �//C#7.0 onwards , we can use expression-body definition for the get

//and set accessors.

 public string Name

 {

 get => name;

 set => name = value;

 }

 }

Chapter 3 Lambda Expressions

85

 class Program

 {

 static void Main(string[] args)

 {

 �Console.WriteLine("***Experimenting lambda expressions with

expression-bodied properties.***");

 Employee empOb = new Employee(1);

 //Error.Company is read-only

 //empOb.Company = "ABC Co.";

 empOb.Name = "Rohan Roy ";//ok

 �Console.WriteLine("{0} works in {1} as an employee.",

empOb.Name,empOb.Company);

 Console.ReadKey();

 }

 }

}

�Output

The following is the output from running this program.

Experimenting lambda expressions with expression-bodied properties.

Rohan Roy works in XYZ Ltd. as an employee.

POINTS TO REMEMBER

In C# 6.0, we got support for expression-bodied methods and read-only properties. In C# 7.0,

the support was extended to properties, indexers, constructors, and finalizers.

�Local Variables in a Lambda Expression
You may have noticed the use of local variables in a lambda expression. In this case, the

variable must be in scope. Demonstration 5 shows a simple use of a local variable inside

a lambda expression.

Chapter 3 Lambda Expressions

86

�Demonstration 5
This demonstration draws your attention to the following points.

•	 You can use either query syntax or method call syntax in your

program. I’ve shown the usage of both. (If you are familiar with LINQ

programming, you know about query syntax; otherwise, you can skip

that segment of code until you learn about it.) Consider the following

code, particularly the bold portions:

IEnumerable<int> numbersAboveMidPoint = intList.Where(x =>

x > midPoint);

•	 midPoint is a local variable. A lambda expression can access this

variable because it is in scope at this location.

•	 List<int> and IEnumerable<int> are used in this example. They

are the simplest constructs in generic programming. If you are new

to generics, you can skip this example for now and come back after

covering generic programming in Chapter 4.

Let’s go through the demonstration.

using System;

using System.Collections.Generic;

using System.Linq;

namespace TestingLocalVariableScopeUsingLambdaExpression

{

 class Program

 {

 static void Main(string[] args)

 {

 �Console.WriteLine("***Testing local variable scope with a

lambda expression.***\n");

 #region Using query syntax

 �/* Inside lambda Expression,you can access the variable that

are in scope (at that location).*/

 int midPoint = 5;

Chapter 3 Lambda Expressions

87

 List<int> intList = new List<int> { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 };

 var myQueryAboveMidPoint = from i in intList

 where i > midPoint

 select i;

 �Console.WriteLine("Numbers above mid point(5) in intList are as

follows:");

 foreach (int number in myQueryAboveMidPoint)

 {

 Console.WriteLine(number);

 }

 #endregion

 #region Using method call syntax

 // Alternative way(using method call syntax)

 �Console.WriteLine("Using a lambda expression, numbers above mid

point(5) in intList are as follows:");

 �IEnumerable<int> numbersAboveMidPoint = intList.Where(x => x >

midPoint);

 foreach (int number in numbersAboveMidPoint)

 {

 Console.WriteLine(number);

 }

 #endregion

 Console.ReadKey();

 }

 }

}

�Output

The following is the output from running this program.

Testing local variable scope with a lambda expression.

Numbers above mid point(5) in intList are as follows:

6

7

8

Chapter 3 Lambda Expressions

88

9

10

Using a lambda expression, numbers above mid point(5) in intList are as

follows:

6

7

8

9

10

�Using Tuples in a Lambda Expression
Since C# 7.0, there has been built-in support for tuples. In many applications, tuples

have built-in delegates (for example, Func, Action, etc.) and lambda expressions. You

learn about built-in delegates in Chapter 4. For now, let’s use tuples in the context of

user-defined delegates.

In the following example, I’m passing a tuple to a method. For simplicity, let’s

assume that the tuple has only two components. You want to pass this tuple to a

method argument, and in turn, you want a tuple in which you get the doubles of each

component. The following method represents such a sample.

static Tuple<int, double> MakeDoubleMethod(Tuple<int, double> input)

{

 return Tuple.Create(input.Item1 * 2, input.Item2 * 2);

}

You can see that inside the tuple, the first component is an int, and the second one

is a double. I’m just multiplying the input arguments by two to get the double of each

component and returning the result with another tuple.

Inside Main method, I called this method as follows.

var resultantTuple = MakeDoubleMethod(inputTuple);

Since I’m invoking the method from a static context, I made MakeDoubleMethod static.

Now you know how to use tuples with a method. Let’s implement the concept using

a lambda expression.

Chapter 3 Lambda Expressions

89

First, declare a delegate, as follows.

delegate Tuple<int, double> MakeDoubleDelegate(Tuple<int, double> input);

Now you have the delegate, so you can use a lambda expression, like the following.

MakeDoubleDelegate delegateObject =

 �(Tuple<int, double> input) => Tuple.Create(input.Item1 * 2,

input.Item2 * 2);

If you do not use a named component, by default, the fields of the tuple are named

Item1, Item2, Item3, and so forth. To get the intended result, you can use the following

lines of code.

var resultantTupleUsingLambda= delegateObject(inputTuple);

Console.WriteLine("Using lambda expression, the content of resultant tuple

is as follows:");

Console.WriteLine("First Element: " + resultantTupleUsingLambda.Item1);

Console.WriteLine("Second Element: " + resultantTupleUsingLambda.Item2);

Like many other examples in this book, I kept both ways to get the intended result. It

can help to compare the use of a lambda expression with a normal method in a similar

context. Next is a complete demonstration.

�Demonstration 6
using System;

namespace UsingTuplesInLambdaExp

{

 delegate Tuple<int, double> MakeDoubleDelegate(Tuple<int, double> input);

 class Program

 {

 static void Main(string[] args)

 {

 Console.WriteLine("***Using Tuples in Lambda Expression.***");

 var inputTuple = Tuple.Create(1, 2.3);

Chapter 3 Lambda Expressions

90

 Console.WriteLine("Content of input tuple is as follows:");

 Console.WriteLine("First Element: " + inputTuple.Item1);

 Console.WriteLine("Second Element: " + inputTuple.Item2);

 var resultantTuple = MakeDoubleMethod(inputTuple);

 �Console.WriteLine("\nPassing tuple as an input argument in a

normal method which again returns a tuple.");

 Console.WriteLine("Content of resultant tuple is as follows:");

 Console.WriteLine("First Element: " + resultantTuple.Item1);

 Console.WriteLine("Second Element: " + resultantTuple.Item2);

 �Console.WriteLine("\nUsing delegate and lambda expression with

tuple now.");

 MakeDoubleDelegate delegateObject =

 �(Tuple<int, double> input) => Tuple.Create(input.Item1 * 2,

input.Item2 * 2);

 var resultantTupleUsingLambda= delegateObject(inputTuple);

 �Console.WriteLine("Using lambda expression, the content of

resultant tuple is as follows:");

 �Console.WriteLine("First Element: " +

resultantTupleUsingLambda.Item1);

 �Console.WriteLine("Second Element: " +

resultantTupleUsingLambda.Item2);

 Console.ReadKey();

 }

 static Tuple<int, double> MakeDoubleMethod(Tuple<int, double> input)

 {

 return Tuple.Create(input.Item1 * 2, input.Item2 * 2);

 }

 }

}

�Output

The following is the output from running this program.

Using Tuples in Lambda Expression.

Content of input tuple is as follows:

Chapter 3 Lambda Expressions

91

First Element: 1

Second Element: 2.3

Passing tuple as an input argument in a normal method which again returns a

tuple.

Content of resultant tuple is as follows:

First Element: 2

Second Element: 4.6

Using delegate and lambda expression with tuple now.

Using lambda expression, the content of resultant tuple is as follows:

First Element: 2

Second Element: 4.6

�Event Subscription with Lambda Expressions
You can use lambda expressions with events.

�Demonstration 7
To demonstrate a case, let’s look at the first program in Chapter 2 and modify it. Since

we’re focusing on lambda expressions, this time, you do not need to make a Receiver

class, which had a method called GetNotificationFromSender, to handle the event

notification when myInt is changing inside a Sender class object. In that example, the

Sender class also had a GetNotificationItself method to handle its own event. It was

presented to demonstrate you that a Sender class can also handle its own event.

This is the complete demonstration.

using System;

namespace UsingEventsAndLambdaExp

{

 class Sender

 {

 private int myInt;

 public int MyInt

Chapter 3 Lambda Expressions

92

 {

 get

 {

 return myInt;

 }

 set

 {

 myInt = value;

 //Whenever we set a new value, the event will fire.

 OnMyIntChanged();

 }

 }

 �// EventHandler is a predefined delegate which is used to handle

//simple events.

 // It has the following signature:

 //delegate void System.EventHandler(object sender,System.EventArgs e)

 //where the sender tells who is sending the event and

 //EventArgs is used to store information about the event.

 public event EventHandler MyIntChanged;

 public void OnMyIntChanged()

 {

 if (MyIntChanged != null)

 {

 MyIntChanged(this, EventArgs.Empty);

 }

 }

 }

 class Program

 {

 static void Main(string[] args)

 {

 �Console.WriteLine("***Demonstration-.Exploring events with

lambda expression.***");

 Sender sender = new Sender();

Chapter 3 Lambda Expressions

93

 //Using lambda expression as an event handler

 //Bad practise

 //sender.MyIntChanged += (Object sender, System.EventArgs e) =>

 �// Console.WriteLine("Using lambda expression, inside Main

method, received a notification: Sender recently has changed

the myInt value . ");

 //Better practise

 EventHandler myEvent =

 (object sender, EventArgs e) =>

 �Console.WriteLine("Using lambda expression, inside Main

method, received a notification: Sender recently has changed

the myInt value . ");

 sender.MyIntChanged += myEvent;

 sender.MyInt = 1;

 sender.MyInt = 2;

 //Unregistering now

 //sender.MyIntChanged -= receiver.GetNotificationFromSender;

 //No notification sent for the receiver now.

 //but there is no guarantee if you follow the bad practise

 //sender.MyIntChanged -= (Object sender, System.EventArgs e) =>

 // Console.WriteLine("Unregistered event notification.");

 //But now it can remove the event properly.

 sender.MyIntChanged -= myEvent;

 sender.MyInt = 3;

 Console.ReadKey();

 }

 }

}

Chapter 3 Lambda Expressions

94

�Output

The following is the output from running this program.

Demonstration-.Exploring events with lambda expression.

Using lambda expression, inside Main method, received a notification:

Sender recently has changed the myInt value .

Using lambda expression, inside Main method, received a notification:

Sender recently has changed the myInt value .

�Q&A Session
3.1  Why are you writing additional code? I’m seeing that you could simply write

the following to subscribe to the event.

sender.MyIntChanged += (Object sender, System.EventArgs e) =>

 �Console.WriteLine("Using lambda expression, inside Main method, received

a notification: Sender recently has changed the myInt value . ");

And you could use it to replace the following lines.

EventHandler myEvent = (object sender, EventArgs e) =>

Console.WriteLine("Using lambda expression, inside Main method, received a

notification: Sender recently has changed the myInt value . ");

sender.MyIntChanged += myEvent;

Is this correct?
Nice catch, but it was necessary. Let’s say that you use the following lines to

subscribe the event.

sender.MyIntChanged += (Object sender, System.EventArgs e) =>

Console.WriteLine("Using lambda expression, inside Main method, received a

notification: Sender recently has changed the myInt value . ");

And, then later unsubscribe from it with the following line.

sender.MyIntChanged -= (Object sender, System.EventArgs e) =>

 Console.WriteLine("Unregistered event notification.");

Chapter 3 Lambda Expressions

95

There is no guarantee that the compiler will unsubscribe from the correct event. For

example, in this case, when I execute the program, I notice a third case in the output that

is unwanted (because before I set myInt’s value to 3, I wanted to unsubscribe from the

event notification). The following is the output.

Demonstration-.Exploring events with lambda expression.

Using lambda expression, inside Main method, received a notification:

Sender recently has changed the myInt value .

Using lambda expression, inside Main method, received a notification:

Sender recently has changed the myInt value .

Using lambda expression, inside Main method, received a notification:

Sender recently has changed the myInt value .

So, experts recommend that in such a case, you should store the anonymous method

/lambda expression in a delegate variable, and then add this delegate to the event. As a

result, you can keep track of it, and if you want, you can unsubscribe from it properly. It is

generally recommended to not use anonymous functions to subscribe to an event when

you want to unsubscribe from the event later. It is because, to avoid memory leaks in

real-world applications, once you subscribe to an event, you should unsubscribe from it

once the intended job is done.

3.2  What is an expression?
According to Microsoft, an expression can be a combination of operators and

operands. It can be evaluated to a single value, method, object, or namespace. An

expression can include a method call, an operator with the operands, a literal value (a

literal is a constant value that does not have a name), or simply the name of a variable,

type member, method parameter, namespace, or type.

The following is a simple example of an expression statement.

int i=1;

Here, i is a simple name, and 1 is the literal value. Literals and simple names are two

of the simplest types of expression.

3.3  What is a Turing machine?
A Turing machine is an abstract machine that can manipulate symbols of a tape by

following rules. It is the mathematical basis of many programming languages.

3.4  What is the difference between a statement lambda and an expression
lambda?

Chapter 3 Lambda Expressions

96

An expression lambda has only one expression, but a statement lambda has a

statement block on the right side of the lambda operator. With a statement lambda,

you can have any number of statements within curly braces. At the time of writing, you

cannot use a statement lambda for expression-bodied methods, but you can use an

expression lambda in those contexts.

In expression trees, only expression lambdas can be used; but you cannot use

statement lambda’s in those contexts. I excluded the discussion of expression trees

because it is a LINQ-related feature, which is beyond the scope of this book.

3.5  If you do not supply parameters, the compiler can still can determine the
types. But when you supply them, they must match the delegate type. Is this correct?

Yes. But sometimes the compiler can’t infer it. In that case, you need to supply

the parameters. In this context, you need to remember that input parameters must be

implicit or explicit.

3.6  You said that input parameters must be implicit or explicit. What does
that mean?

Let’s suppose that you have the following delegate.

delegate string MyDelegate(int a, int b);

If you write the following segment of code, you get a compile-time error, as shown in

Figure 3-6.

MyDelegate resultOfLambdaExp =(int x, y)=> (x > y) ? "Yes." : "No.";

Figure 3-6.  Compile-time error due to inconsistent lambda parameter usage

The remedy is as follows.

MyDelegate resultOfLambdaExp =(int x, int y)=> (x > y) ? "Yes." : "No.";

Or, you can remove both ints, as follows.

MyDelegate resultOfLambdaExp =(x, y)=> (x > y) ? "Yes." : "No.";

Chapter 3 Lambda Expressions

97

3.7  What are the restrictions associated with lambda expressions?
Lambda expressions are supersets of anonymous methods. All restrictions that

are applicable to anonymous methods are also applicable to lambda expressions (for

example, in the context of an anonymous method, you cannot use ref or out parameters

of the defining method). For reference, remember the following points.

•	 Lambdas are not allowed on the left side of an “is” or “as” operator.

In this context, you may remember the statement from C# 6.0

specification, which says, “An anonymous function doesn’t have

a value or type in and of itself but in convertible to a compatible

delegate or expression tree type.”

•	 You cannot use break, goto, or continue to jump out from the

lambda expression scope.

•	 You cannot exercise unsafe codes inside a lambda expression. For

example, let’s suppose that you have the following delegate:

delegate void DelegateWithNoParameter();

If you write the following segment of code, you get a compile-time error in all the

places (which I marked with comments) where you manipulated the pointers.

 DelegateWithNoParameter delOb = () =>

 {

 int a = 10;

 �//CS 0214:Pointers and fixed sized buffers may

//only be used only in an unsafe context

 int* p = &a;//Error

 //Console.WriteLine("a={0}", a);

 //Printing using string interpolation

 Console.WriteLine($"a={a}");

 Console.WriteLine($"*p={*p}");//Error CS0214

 };

Chapter 3 Lambda Expressions

98

3.8  You said that in the context of an anonymous method, you cannot use the ref
or out parameters of the defining method. Can you please elaborate?

Let’s consider our Sum method in demonstration1 and modify it as follows.

public static int Sum(ref int a, ref int b)

 {

 //return a + b;

 //Using Anonymous method(C# 2.0 onwards)

 Mydel del2 = delegate (int x, int y)

 {

 //Following segment will NOT work

 x = a;//CS1628

 y = b;//CS1628

 return x + y;

 //Following segment will work

 //return x + y;

 };

 return del2(a, b);

 }

Where the Mydel delegate is unchanged and as follows:

public delegate int Mydel(int x, int y);

You will get a compile-time error (marked with CS1628) for this code segment.

CS1628 says that you cannot use the ref, out, or in parameters inside an anonymous

method or a lambda expression. Figure 3-7 is a Visual Studio 2019 error screenshot for

your reference.

You can refer to a potential solution that is shown using a commented line in the

prior code segment.

Figure 3-7.  Compile-time error. You cannot use ref, out, or in parameter inside an
anonymous method or lambda expression

Chapter 3 Lambda Expressions

99

�Final Words
That’s all about lambdas for now. Before you leave this chapter, I want to remind you that

although cool features are very tempting to use, readability and understandability of the

code should be your topmost priority.

Next, we move to Part 2 (which starts with Chapter 4) of the book, where you see

usage of the concepts that you’ve learned so far. Although Part 2 is heart of this book,

the contents of Part 1 (Chapters 1, 2, and 3) are the building blocks for them.

�Summary
This chapter addressed the following key questions.

•	 Why are anonymous methods and lambda expressions useful?

•	 How can you convert an anonymous method to a lambda

expression?

•	 How can you use lambda expressions that accept a different number

of parameters?

•	 How can you use a local variable with a lambda expression?

•	 What is an expression lambda?

•	 What is a statement lambda?

•	 How can you use expression syntax to define non-lambda methods?

And what are its usage limitations?

•	 What are the key restrictions applicable to lambda expressions?

Chapter 3 Lambda Expressions

PART II

Exploring Advanced
Programming
•	 Chapter 4: Generic Programming

•	 Chapter 5: Thread Programming

•	 Chapter 6: Asynchronous Programming

•	 Chapter 7: Database Programming

103
© Vaskaran Sarcar 2020
V. Sarcar, Getting Started with Advanced C#, https://doi.org/10.1007/978-1-4842-5934-4_4

CHAPTER 4

Generic Programming
In this chapter, you learn about generic programming and you are introduced to generics,

one of the coolest features of C#. It is an integral part of advanced programming. Generic

programming simply means the efficient use of generics. It first appeared in C# 2.0. Over

time, additional flexibilities were added to this powerful feature, and nowadays, you find

rare real-life applications that do not use generics at their core.

�The Motivation Behind Generics
When you use a generic type in your application, you do not commit to a specific type

for your instances. For example, when you instantiate a generic class, you can say that

you want your object to deal with int types, but at another time you can say that you want

your object to deal with double types, string types, object types, or so forth. In short, this

kind of programming allows you to make a type-safe class without having to commit to

any particular type.

This is not a new concept, and it is definitely not limited to C#. You see similar kinds

of programming in other languages as well, for example, Java and C++ (using templates).

The following are some of the advantages of using a generic application.

•	 Your program is reusable.

•	 Your program is enriched with better type-safety.

•	 Your program can avoid typical runtime errors that may arise due to

improper casting.

To address these points, I’ll start with a simple nongeneric program and analyze the

potential drawbacks. After that, I’ll show you a corresponding a generic program and give a

comparative analysis to discover the advantages of generic programming. Let’s start.

https://doi.org/10.1007/978-1-4842-5934-4_4#ESM

104

�Demonstration 1
Demonstration 1 has a class called NonGenericEx. This class has two instance methods:

DisplayMyInteger and DisplayMyString.

public int DisplayMyInteger(int myInt)

{

 return myInt;

}

public string DisplayMyString(string myStr)

{

 return myStr;

}

Did you notice that both methods are basically doing the same operation, but one

method is dealing with an int and the other is dealing with a string? Not only is this

approach ugly, it also suffers from another potential drawback, which you’ll see in the

analysis section. But before we analyze it, let’s execute the program.

using System;

namespace NonGenericProgramDemo1

{

 class NonGenericEx

 {

 public int DisplayMyInteger(int myInt)

 {

 return myInt;

 }

 public string DisplayMyString(string myStr)

 {

 return myStr;

 }

 }

 class Program

 {

 static void Main(string[] args)

Chapter 4 Generic Programming

105

 {

 Console.WriteLine("***A non-generic program demonstration.***");

 NonGenericEx nonGenericOb = new NonGenericEx();

 �Console.WriteLine("DisplayMyInteger returns :{0}",

nonGenericOb.DisplayMyInteger(123));

 �Console.WriteLine("DisplayMyString returns :{0}", nonGenericOb.

DisplayMyString("DisplayMyString method inside NonGenericEx is

called."));

 Console.ReadKey();

 }

 }

}

�Output

This is the output.

A non-generic program demonstration.
DisplayMyInteger returns :123

DisplayMyString returns :DisplayMyString method inside NonGenericEx is

called.

�Analysis

Let’s suppose that now you need to deal with another datatype—a double. Using the

current code, add the following line inside Main.

Console.WriteLine("ShowDouble returns :{0}", nonGenericOb.

DisplayMyDouble(25.5));//error

You get the following compile-time error.

Error CS1061 'NonGenericEx' does not contain a definition for

'DisplayMyDouble' and no accessible extension method 'DisplayMyDouble'

accepting a first argument of type 'NonGenericEx' could be found (are you

missing a using directive or an assembly reference?)

Chapter 4 Generic Programming

106

This is because you do not have a DisplayMyDouble method yet. At the same

time, you cannot use any existing methods to deal with a double datatype. An obvious

approach is to introduce a method that looks like the following.

public double DisplayMyDouble(double myDouble)

{

 return myDouble;

}

But how long can you tolerate this? If your code size kept growing in the same

manner for all the other datatypes, your code would not be reusable for different

datatypes. And at the same time, as the code grew, it would look ugly and the overall

maintenance would become hectic. Fortunately, you have a simple solution when you

prefer generic programming over its counterpart nongeneric programming.

First, the following are the key points that you should remember.

•	 Generic classes and methods promote reusability, type-safety, and

efficiency. Their nongeneric counterparts don’t have these qualities.

You often see the use of generics with collections and the methods

that work on them.

•	 The .NET Framework class library includes a System.Collections.

Generic namespace that has several generic-based collection classes.

This namespace was added in version 2.0. This is why Microsoft

recommends that any application that targets .NET Framework

2.0 (or later) should use generic collection classes instead of their

nongeneric counterparts, such as ArrayList.

•	 Angle brackets <> are used in generic programs. A generic type is

placed in angle brackets; for example, <T> in your class definition.

T is the most common single letter to indicate a generic type when

you deal with a single generic type only.

•	 You can define a class with placeholders for the type of its methods,

fields, parameters, and so forth, in a generic program; later, these

placeholders are replaced with the particular type that you want to use.

Chapter 4 Generic Programming

107

•	 Here is the simple generic class used in demonstration 2:

class GenericClassDemo<T>
 {
 public T Display(T value)
 {
 return value;
 }
 }

•	 T is called a generic type parameter.

•	 The following is an example of instantiation from a generic class:

GenericClassDemo<int> myGenericClassIntOb = new
GenericClassDemo<int>();

Note that the type parameter is replaced with int in this case.

•	 You may notice multiple generic type parameters in a particular
declaration. For example, the following class has multiple generic types:

public class MyDictionary<K,V>{//Some code}

•	 A generic method might use its type parameter as its return type. It
can also use the type parameter as a type of a formal parameter. Inside
GenericClassDemo<T> class, the Display method uses T as a return
type. This method also uses T as the type of its formal parameter.

•	 You can place constraints on a generic type. This is explored later in
this chapter.

Now go through demonstration 2.

�Demonstration 2
Demonstration 2 is a simple generic program. Before you instantiate a generic class,
you need to specify the actual types to substitute with the type parameters. In this
demonstration, the following lines of code are inside Main.

GenericClassDemo<int> myGenericClassIntOb = new GenericClassDemo<int>();
GenericClassDemo<string> myGenericClassStringOb = new
GenericClassDemo<string>();
GenericClassDemo<double> myGenericClassDoubleOb = new

GenericClassDemo<double>();

Chapter 4 Generic Programming

108

These three lines of code tell you that the first line substitutes the type parameter
with an int; the second line substitutes the type parameter with a string; and the third
line substitutes the type parameter with a double.

When you do this kind of coding, the type substitutes the type parameter everywhere
it appears. As a result, you get a type-safe class that is constructed based on your chosen
type. When you choose an int type and use the following line of code,

GenericClassDemo<int> myGenericClassIntOb = new GenericClassDemo<int>();

you can use the following line to get an int from the Display method.

Console.WriteLine("Display method returns :{0}", myGenericClassIntOb.
Display(1));

This is the complete demonstration.

using System;

namespace GenericProgramDemo1
{
 class GenericClassDemo<T>
 {
 public T Display(T value)
 {
 return value;
 }
 }
 class Program
 {
 static void Main(string[] args)
 {
 �Console.WriteLine("***Introduction to Generic

Programming.***");
 �GenericClassDemo<int> myGenericClassIntOb = new

GenericClassDemo<int>();
 �Console.WriteLine("Display method returns :{0}",

myGenericClassIntOb.Display(1));
 �GenericClassDemo<string> myGenericClassStringOb = new

GenericClassDemo<string>();

Chapter 4 Generic Programming

109

 �Console.WriteLine("Display method returns :{0}",

myGenericClassStringOb.Display("A generic method is called."));

 �GenericClassDemo<double> myGenericClassDoubleOb = new

GenericClassDemo<double>();

 �Console.WriteLine("Display method returns :{0}",

myGenericClassDoubleOb.Display(12.345));

 Console.ReadKey();

 }

 }

}

�Output
This is the output.

Introduction to Generic Programming.
Display method returns :1

Display method returns :A generic method is called.

Display method returns :12.345

�Analysis
Let’s do a comparative analysis of demonstration 1 (a nongeneric program) and

demonstration 2 (a generic program). Both programs are doing the same operations but

there are some key distinctions between them, as follows.

•	 In demonstration 1, you need to specify methods like

DisplayInteger, DisplayString, DisplayDouble, and so forth to

handle the datatypes. But in demonstration 2, only one generic

Display method is sufficient enough to handle the different

datatypes, and you can accomplish this task with fewer lines of code.

•	 When the DisplayDouble method was absent inside Main in

demonstration 1, we encountered a compile-time error when we wanted

to deal with the double datatype. But in demonstration 2, there was no

need to define any additional methods to handle a double datatype (or

any other datatype). So, you can see that this generic version is much

more flexible than the nongeneric version.

Now consider demonstration 3.

Chapter 4 Generic Programming

110

�Demonstration 3
This demonstration shows a nongeneric program that uses the ArrayList class. The size

of an ArrayList can grow dynamically. It has a method called Add, which can help you to

add an object to at the end of the ArrayList. In the upcoming demonstration, I used the

following lines.

myList.Add(1);

myList.Add(2);

// No compile time error

myList.Add("InvalidElement");

Since the method expects objects as arguments, these lines are compiled successfully.

But you’ll face the problem if you fetch the data using the following code segment.

foreach (int myInt in myList)

{

 Console.WriteLine((int)myInt); //downcasting

}

The third element is not an int (it is a string), and as a result, you encounter a

runtime error. A runtime error is worse than a compile-time error, because at this stage,

you can hardly do anything fruitful.

This is the complete demonstration.

using System;

using System.Collections;

namespace NonGenericProgramDemo2

{

 class Program

 {

 static void Main(string[] args)

 {

 Console.WriteLine("***Use Generics to avoid runtime error***");

 ArrayList myList = new ArrayList();

 myList.Add(1);

 myList.Add(2);

 //No compile time error

Chapter 4 Generic Programming

111

 myList.Add("InvalidElement");

 foreach (int myInt in myList)

 {

 �/*Will encounter run-time exception for the final

element which is not an int */

 Console.WriteLine((int)myInt); //downcasting

 }

 Console.ReadKey();

 }

 }

}

�Output

The program does not raise any compile-time errors, but at runtime, you see the

exception shown in Figure 4-1.

Figure 4-1.  Runtime error InvalidCastException occurred

Now you understand that you encounter this runtime error because the third

element (i.e., myList [2] in the ArrayList) was supposed to be an int, but I stored a

string. At compile time, I did not encounter any issues because it was stored as an object.

�Analysis

The prior demonstration also suffers from performance overhead due to boxing and

downcasting.

Chapter 4 Generic Programming

112

�A Quick Look into the List Class
Before you go further, let’s have a quick look at the built-in List class. This class is very

common and widely used. It is made for generics, so when you instantiate a List class,

you can mention the type that you want to put in your list. For example, in the following

List<int> myList = new List<int>(); contains a list of ints.

List<double> myList = new List<double>(); contains a list of doubles.

List<string> myList = new List<string>(); contains a list of strings

The List class has many built-in methods. I recommend that you go through them.

These ready-made constructs make your programming life easier. For now, let’s use the

Add method. Using this method, you can add items to the end of your list.

This is the method description from Visual IDE.

//

// Summary:

// Adds an object to the end of the System.Collections.Generic.List`1.

//

// Parameters:

// item:

// The object to be added to the end of the

// System.Collections.Generic.List`1. The value can be null

// for reference types.

public void Add(T item);

The following segment of code creates a list of ints and then adds two items to it.

List<int> myList = new List<int>();

myList.Add(10);

myList.Add(20);

Now come to the important part. If you add a string to this list by mistake, you get a

compile-time error.

This is the erroneous code segment.

//Compile time error: Cannot convert from 'string' to 'int'

//myList.Add("InvalidElement");//error

Chapter 4 Generic Programming

113

�Demonstration 4
To compare with demonstration 3, in the following example, let’s use List<int> instead
of ArrayList and then review the concepts that we’ve discussed so far.

This is the complete program.

using System;
using System.Collections.Generic;

namespace GenericProgramDemo2
{
 class Program
 {
 static void Main(string[] args)
 {
 Console.WriteLine("***Using Generics to avoid run-time error.***");
 List<int> myList = new List<int>();
 myList.Add(10);
 myList.Add(20);
 //Cannot convert from 'string' to 'int'
 myList.Add("InvalidElement");//Compile-time error
 foreach (int myInt in myList)
 {
 Console.WriteLine((int)myInt);//downcasting
 }
 Console.ReadKey();
 }
 }
}

�Output
In this program, you get the following compile-time error

CS1503 Argument 1: cannot convert from 'string' to 'int'

for the following line of code.

myList.Add("InvalidElement");

Chapter 4 Generic Programming

114

You cannot add a string in myList because it was intended to hold integers only

(note that I’m using List<int>). Since the error is caught at compile time, you do not

need to wait until runtime to catch this defect.

Once you comment out the erroneous line, you can compile this program and

generate the following output.

Using Generics to avoid run-time error.
1

2

�Analysis

When you compare demonstration 3 with demonstration 4, you see that

•	 To avoid runtime errors, you should prefer the generic version over

its counterpart—the nongeneric version.

•	 Generic programming helps you avoid penalties caused by

boxing/unboxing.

•	 To store strings, you can use something like List<string>

myList2 = new List<string>(); to create a list that holds only the

string types. Similarly, List<T> can be used for other datatypes. This

shows that the List<T> version is more flexible and usable than the

nongeneric version ArrayList.

�Generic Delegates
In Chapter 1, you learned about user-defined delegates and their importance. Now,

let’s discuss generic delegates. In this section, I cover three important built-in generic

delegates—called Func, Action, and Predicate, which are very common in generic

programming. Let’s start.

�Func Delegate
There are 17 overloaded versions of the Func delegate. They can take 0 to 16 input

parameters but always have one return type. For example,

Chapter 4 Generic Programming

115

Func<out TResult>

Func<in T, out TResult>

Func<in T1, in T2,out TResult>

Func<in T1, in T2, in T3, out TResult>

......

Func<in T1, in T2, in T3,in T4, in T5, in T6,in T7,in T8,in T9,in T10,in

T11,in T12,in T13,in T14,in T15,in T16, out TResult>

To understand the usage, let’s consider the following method.

private static string DisplayEmployeeDetails(string name, int empId, double

salary)

{

 �return string.Format("Employee Name:{0},id:{1}, salary:{2}$", name,

empId,salary);

}

To invoke this method using a custom delegate, you can follow these steps.

	 1.	 Define a delegate (say, Mydel); something like this:

public delegate string Mydel(string n, int r, double d);

	 2.	 Create a delegate object and point the method using a code;

something like the following:

Mydel myDelOb = new Mydel(DisplayEmployeeDetails);

Or in short,

Mydel myDelOb = DisplayEmployeeDetails;

	 3.	 Invoke the method like this:

myDelOb.Invoke("Amit", 1, 1025.75);

Or, simply with this:

 myDelOb("Amit", 1, 1025.75);

If you use the built-in Func delegate, you can make your code simpler and shorter. In

this case, you can use it as follows.

Chapter 4 Generic Programming

116

Func<string, int, double, string> empOb = new Func<string, int, double,string>

(DisplayEmployeeDetails);

Console.WriteLine(empOb("Amit", 1,1025.75));

The Func delegate is perfectly considering all three input arguments (a string, an int,

and a double, respectively) and returning a string. You may be confused and want to know

which parameter denotes the return type. If you move your cursor on it in Visual Studio, you

can see that the last parameter (TResult) is considered the return type of the function, and

the others are considered input types (see Figure 4-2).

Figure 4-2.  Details of Func<in T1, in T2, in T3, outTResult> delegate

Note T he magic of in and out parameters will be revealed to you shortly.

�Q&A Session
4.1  In the previous code segment, DisplayEmployeeDetails has three parameters,

and its return type was string. Usually, I have different methods that can take a
different number of input parameters. How can I use Func in those contexts?

Func delegates can consider 0 to 16 input parameters. You can use the overloaded

version that suits your needs. For example, if you have a method that takes one string,

and one int as input parameters, and whose return type is a string, and the method is

something like the following.

private static string DisplayEmployeeDetailsShortForm(string name, int empId)

{

 return string.Format("Employee Name:{0},id:{1}", name, empId);

}

Chapter 4 Generic Programming

117

You can use following overloaded version of Func.

Func<string, int, string> empOb2 = new Func<string, int, string>

(DisplayEmployeeDetailsShortForm);

Console.WriteLine(empOb2("Amit", 1));

�Action Delegate
Visual studio describes the following about an Action delegate:

 Encapsulates a method that has no parameters and does not return a value.

 public delegate void Action();

But normally you’ll notice the generic version of this delegate which can take 1 to 16

input parameters but do not have a return type. The overloaded versions are as follows.

Action<in T>

Action<in T1,in T2>

Action<in T1,in T2, in T3>

....

Action<in T1, in T2, in T3,in T4, in T5, in T6,in T7,in T8,in T9,in T10,in

T11,in T12,in T13,in T14,in T15,in T16>

Let’s suppose that you have a method called CalculateSumOfThreeInts that takes

three ints as input parameters and whose return type is void, as follows.

private static void CalculateSumOfThreeInts(int i1, int i2, int i3)

{

 int sum = i1 + i2 + i3;

 Console.WriteLine("Sum of {0},{1} and {2} is: {3}", i1, i2, i3, sum);

}

You can use an Action delegate to get the sum of three integers, as follows.

Action<int, int, int> sum = new Action<int, int, int>(CalculateSumOfThreeInts);

sum(10,3,7);

Chapter 4 Generic Programming

118

�Predicate Delegate
A Predicate delegate evaluates something. For example, let’s assume that you have a

method that defines some criteria, and you need to check whether an object can meet

the criteria or not. Let’s consider the following method.

private static bool GreaterThan100(int myInt)

{

 return myInt > 100 ? true : false;

}

You can see that this method evaluates whether an int is greater than 100 or not. So,

you can use a Predicate delegate to perform the same test, as follows.

Predicate<int> isGreater = new Predicate<int>(IsGreaterThan100);

Console.WriteLine("101 is greater than 100? {0}", isGreater(101));

Console.WriteLine("99 is greater than 100? {0}", isGreater(99));

�Demonstration 5
This is the complete program that demonstrates all the concepts discussed so far.

using System;

namespace GenericDelegatesDemo

{

 class Program

 {

 static void Main(string[] args)

 {

 Console.WriteLine("***Using Generic Delegates.***");

 // Func

 Console.WriteLine("Using Func delegate now.");

 �Func<string, int, double,string> empOb = new Func<string, int,

double,string>(DisplayEmployeeDetails);

 Console.WriteLine(empOb("Amit", 1,1025.75));

 Console.WriteLine(empOb("Sumit", 2,3024.55));

Chapter 4 Generic Programming

119

 // Action

 Console.WriteLine("Using Action delegate now.");

 �Action<int, int, int> sum = new Action<int, int,

int>(CalculateSumOfThreeInts);

 sum(10, 3, 7);

 sum(5, 10, 15);

 /*
 Error:Keyword 'void' cannot be used in this context

 �//Func<int, int, int, void> sum2 = new Func<int, int, int, void>

(CalculateSumOfThreeInts);

 */

 // Predicate

 Console.WriteLine("Using Predicate delegate now.");

 �Predicate<int> isGreater = new Predicate<int>(IsGreater

Than100);

 �Console.WriteLine("101 is greater than 100? {0}",

isGreater(101));

 �Console.WriteLine("99 is greater than 100? {0}",

isGreater(99));

 Console.ReadKey();

 }

 �private static string DisplayEmployeeDetails(string name,

int empId, double salary)

 {

 �return string.Format("Employee Name:{0},id:{1}, salary:{2}$",

name, empId,salary);

 }

 private static void CalculateSumOfThreeInts(int i1, int i2, int i3)

 {

 int sum = i1 + i2 + i3;

 �Console.WriteLine("Sum of {0},{1} and {2} is: {3}", i1, i2, i3, sum);

 }

 private static bool IsGreaterThan100(int input)

Chapter 4 Generic Programming

120

 {

 return input > 100 ? true : false;

 }

 }

}

�Output

Using Generic Delegates.
Using Func delegate now.

Employee Name:Amit,id:1, salary:1025.75$

Employee Name:Sumit,id:2, salary:3024.55$

Using Action delegate now.

Sum of 10,3 and 7 is: 20

Sum of 5,10 and 15 is: 30

 Using Predicate delegate now.

101 is greater than 100? True

99 is greater than 100? False

�Q&A Session
4.2  I’ve seen the use of built-in generic delegates. How can I use my own generic

delegates?
I used the built-in generic delegates because they make your life easier. No one is

restricting you from using your own generic delegate. I suggest you follow the construct

of these generic delegates before you use your own, however. For example, in the

previous demonstration, I used the Action delegate as follows.

Action<int, int, int> sum = new Action<int, int,

int>(CalculateSumOfThreeInts);

sum(10, 3, 7);

Now, instead of using the built-in delegate, you can define your own generic delegate

(say, CustomAction) as follows.

// Custom delegate

public delegate void CustomAction<in T1, in T2, in T3>(T1 arg1, T2 arg2, T3 arg3);

Chapter 4 Generic Programming

121

And then you could use it as follows.

CustomAction<int, int, int> sum2 = new CustomAction<int, int,

int>(CalculateSumOfThreeInts);

sum2(10, 3, 7);

4.3  I’m seeing that when you created delegate instances, you didn’t use the short
form. Is there any reason for that?

Good find. You can always use the short form. For example, instead of using

Action<int, int, int> sum = new Action<int, int,

int>(CalculateSumOfThreeInts);

I could simply use

Action<int, int, int> sum = CalculateSumOfThreeInts;

But since you have only started to learn about delegates, these long forms can often

help you to understand the code better.

4.4  Can I use Func delegate to point to a method that returns void?
When you have a method with a void return type, it is recommended that you use the

Action delegate. If you use the following line of code in prior demonstration by mistake,

you get a compile-time error because the target method return type is void.

//Error:Keyword 'void' cannot be used in this context

Func<int, int, int, void> sum2 = new Func<int, int, int, void>(CalculateSum

OfThreeInts);//error

4.5  Can I have generic methods?
In demonstration 2, you saw a generic method, as follows.

public T Display(T value)

{

 return value;

}

It shows that you can opt for a generic method when you have a set of methods that

are identical except for the types, it works on.

For example, in Demonstration2, you have seen that I used the same named

method when I invoked: Display(1), Display("A generic method is called.") and

Display(12.345).

Chapter 4 Generic Programming

122

�The Default Keyword in Generics
It shows that you have seen the use of default keyword in switch statements, where

default refers to a default case. In generic programming, it has a special meaning. You

can use default to initialize generic types with the default values. In this context, you

may note the following points.

•	 The default value for a reference type is null.

•	 The default value of a value type (other than struct and bool type) is 0.

•	 For a bool type, the default value is false.

•	 For a struct (which is a value type) type, the default value is an object

of that struct with all fields set with their default values (i.e., the

default value of a struct is value produced by setting all value types

fields to their default values and all reference type fields to null.)

�Demonstration 6
Consider the following example with the output.

using System;

namespace UsingdefaultKeywordinGenerics

{

 class MyClass

 {

 // Some other stuff as per need

 }

 struct MyStruct

 {

 // Some other stuff as per need

 }

 class Program

 {

 static void PrintDefault<T>()

 {

 T defaultValue = default(T);

Chapter 4 Generic Programming

123

 string printMe = String.Empty;

 �printMe = (defaultValue == null) ? "null" : defaultValue.

ToString();

 �Console.WriteLine("Default value of {0} is {1}", typeof(T), printMe);

 // C# 6.0 onwards,you can use interpolated string

 �//Console.WriteLine($"Default value of {typeof(T)} is

{printMe}.");

 }

 static void Main(string[] args)

 {

 �Console.WriteLine("***Using default keyword in Generic

Programming.***");

 PrintDefault<int>();//0

 PrintDefault<double>();//0

 PrintDefault<bool>();//False

 PrintDefault<string>();//null

 PrintDefault<int?>();//null

 PrintDefault<System.Numerics.Complex>(); //(0,0)

 PrintDefault<System.Collections.Generic.List<int>>(); // null

 PrintDefault<System.Collections.Generic.List<string>>(); // null

 PrintDefault<MyClass>(); //null

 PrintDefault<MyStruct>();

 Console.ReadKey();

 }

 }

}

�Output

This is the output.

Using default keyword in Generic Programming.
Default value of System.Int32 is 0

Default value of System.Double is 0

Default value of System.Boolean is False

Default value of System.String is null

Default value of System.Nullable`1[System.Int32] is null

Chapter 4 Generic Programming

124

Default value of System.Numerics.Complex is (0, 0)

Default value of System.Collections.Generic.List`1[System.Int32] is null

Default value of System.Collections.Generic.List`1[System.String] is null

Default value of UsingdefaultKeywordinGenerics.MyClass is null

Default value of UsingdefaultKeywordinGenerics.MyStruct is

UsingdefaultKeywordinGenerics.MyStruct

Note T he last line of the output is printing the <namespace>.<Name of the

structure>; basically you can’t set a default value for a structure. More
specifically, the default value of a struct is the value returned by the default
constructor of the struct. As said before, the default value of a struct is value
produced by setting all value types fields to their default values and all reference
type fields to null. The implicit parameterless constructor in each struct sets these
default values. You cannot define an explicit parameterless constructor for your
own use. It is also useful to know that the simple types in C# such as int, double,
bool etc. are often called as struct types.

�Q&A Session
4.6  How is the default keyword used in generic programming?

You have seen that the default keyword helps you find the default value of a type. In

generic programming, sometimes you may want to provide a default value for a generic

type. In the previous example, you saw that a default value differs according to a value

type or a reference type. In that example, note the PrintDefault<T>() method carefully.

Instead of using the following line of code

T defaultValue = default(T);

if you use something like

T defaultValue = null;//will not work for value types

you get a compile-time error that says,

Error CS0403 Cannot convert null to type parameter 'T' because it could

be a non-nullable value type. Consider using 'default(T)' instead.

Chapter 4 Generic Programming

125

Or, if you use the following line of code

T defaultValue = 0;//will not work for reference types

you get compile-time error that says,

Error CS0029 Cannot implicitly convert type 'int' to 'T'

�Implementing Generic Interface
Just like generic classes, you can have generic interfaces. A generic interface can contain

both generic and nongeneric methods. If you want to implement a generic interface

method, you can follow the same approach that you use when you normally implement

a nongeneric interface method. The following program demonstrates how to implement

methods of a generic interface.

�Demonstration 7
To cover both scenarios, in this example, the generic interface GenericInterface<T>

has a generic method called GenericMethod(T param) and a nongeneric method called

NonGenericMethod(). The first method has a generic return type, T, and the second one

has a void return type.

The remaining parts are easy to understand, and I kept the comments for your

reference.

using System;

namespace ImplementingGenericInterface

{

 interface GenericInterface<T>

 {

 //A generic method

 T GenericMethod(T param);

 //A non-generic method

 public void NonGenericMethod();

 }

Chapter 4 Generic Programming

126

 //Implementing the interface

 class ConcreteClass<T>:GenericInterface<T>

 {

 //Implementing interface method

 public T GenericMethod(T param)

 {

 return param;

 }

 public void NonGenericMethod()

 {

 �Console.WriteLine("Implementing NonGenericMethod of

GenericInterface<T>");

 }

 }

 class Program

 {

 static void Main(string[] args)

 {

 Console.WriteLine("***Implementing generic interfaces.***\n");

 //Using 'int' type

 GenericInterface<int> concreteInt = new ConcreteClass<int>();

 int myInt = concreteInt.GenericMethod(5);

 Console.WriteLine($"The value stored in myInt is : {myInt}");

 concreteInt.NonGenericMethod();

 //Using 'string' type now

 �GenericInterface<string> concreteString = new

ConcreteClass<string>();

 string myStr = concreteString.GenericMethod("Hello Reader");

 Console.WriteLine($"The value stored in myStr is : {myInt}");

 concreteString.NonGenericMethod();

 Console.ReadKey();

 }

 }

}

Chapter 4 Generic Programming

127

�Output
This is the output.

Implementing generic interfaces.

The value stored in myInt is : 5

Implementing NonGenericMethod of GenericInterface<T>

The value stored in myStr is : 5

Implementing NonGenericMethod of GenericInterface<T>

�Analysis

There are some interesting points to note in the previous example. Let’s check them.

•	 If you have another concrete class that wants to implement

GenericInterface<T>, and you write following code block, you get

compile-time errors.

 class ConcreteClass2 : GenericInterface<T>//Error

 {

 public T GenericMethod(T param)

 {

 throw new NotImplementedException();

 }

 public void NonGenericMethod()

 {

 throw new NotImplementedException();

 }

 }

This is because I did not pass type argument T to ConcreteClass2.

You have three compile-time errors with the same “Error CS0246

The type or namespace name 'T' could not be found (are you

missing a using directive or an assembly reference?).” message.

•	 You get the same errors if you write the following segment of code:

class ConcreteClass2<U> : GenericInterface<T>//Error

Chapter 4 Generic Programming

128

The reason is obvious: T is not found.

When you implement the generic interface, the implementing

class needs to work on the same T type parameter. This is why the

following segment of code is valid.

class ConcreteClass<T> : GenericInterface<T>

{//remaining code}

�Q&A Session
4.7  In the previous example, can my implementing class work on multiple type

parameters?
Yes. Both of the following code segments are also valid.

class ConcreteClass2<U,T> : GenericInterface<T>//valid

{//remaining code}

class ConcreteClass2<T, U> : GenericInterface<T>//also valid

{remaining code}

The key thing to remember is that your implementing class needs to supply the

argument(s) required by the interface (for example, in this case, an implementor class

must include the T parameter, which is present in the GenericInterface<T> interface.

4.8  Suppose you’ve got the following two interfaces.

interface IFirstInterface1<T> { }

interface ISecondInterface2<T, U> { }

Can you predict whether the following segments of code will compile or not?

Segment 1:

class MyClass1<T> : IFirstInterface<T> { }

Segment 2:

class MyClass2<T> : ISecondInterface<T, U> { }

Segment 3:

class MyClass3<T> : ISecondInterface<T, string> { }

Segment 4:

class MyClass4<T> : ISecondInterface<string, U> { }

Segment 5:

Chapter 4 Generic Programming

129

class MyClass5<T> : ISecondInterface<string, int> { }

Segment 6:

class MyClass6 : ISecondInterface<string, int> { }

Only segment 2 and segment 4 will not compile. In segment 2, MyClass2 doesn’t

include the U parameter. In segment 4, MyClass4 doesn’t include the T parameter.

In segment 1 and segment 3, MyClass1 and MyClass3 have the required

parameter(s), respectively.

Segments 5 and 6 had no issues at all, because in these cases, the respective classes

worked on interfaces whose constructions are closed.

�Generic Constraints
You can place restrictions on generic type parameters. For example, you may opt that

your generic type must be a reference type or a value type, or it should derive from any

other base type and so forth. But why should you allow constraints in your code? The

simple answer is that by using constraints, you can have lots of control on your code, and

you allow a C# compiler to know in advance about the type you are going to use. As a

result, a C# compiler can help you detect bugs during compile time.

To specify a constraint, you use the where keyword and a colon (:) operator, such as

in the following.

class EmployeeStoreHouse<T> where T : IEmployee

or,

class EmployeeStoreHouse<T> where T : IEmployee,new()

IEmployee is an interface.

In general, the following constraints are used.

•	 where T: struct means that type T must be a value type. (Remember

that a struct is a value type.)

•	 where T: class means that type T must be a reference type.

(Remember that a class is a reference type.)

•	 where T: IMyInter means that type T must implement the IMyInter

interface.

Chapter 4 Generic Programming

130

•	 where T: new() means that type T must have a default

(parameterless) constructor. (If you use it with other constraints,

place it in the last position.)

•	 where T: S means that type T must be derived from another generic

type S. It is sometimes referred to as a naked type constraint.

Now let’s go through a demonstration.

�Demonstration 8
In demonstration 8, the IEmployee interface contains an abstract Position method. I

use this method to set the designation of an employee before I store the details of the

employee in an employee store (think of it as a simple database of employees). The

Employee class inherits from IEmployee, so it needs to implement this interface method.

The Employee class has a public constructor that can take two arguments: the first one

sets the employee name, and the second one indicates the years of experience. I’m

setting a designation based on employee experience. (Yes, for simplicity, I’m considering

only the years of experience to set a position.)

In this demonstration, you see the following line.

class EmployeeStoreHouse<T> where T : IEmployee

It is the constraint for your generic parameter that simply tells you that the generic

type T must implement the IEmployee interface.

Lastly, I used range-based switch statements, which are supported in C# 7.0 onward.

If you’re using a legacy version, you can replace the code segment with traditional switch

statements.

This is the complete demonstration.

using System;

using System.Collections.Generic;

namespace UsingConstratintsinGenerics

{

 interface IEmployee

 {

 string Position();

 }

Chapter 4 Generic Programming

131

 class Employee : IEmployee

 {

 public string Name;

 public int YearOfExp;

 //public Employee() { }

 public Employee(string name, int yearOfExp)

 {

 this.Name = name;

 this.YearOfExp = yearOfExp;

 }

 public string Position()

 {

 string designation;

 //C#7.0 onwards range based switch statements are allowed.

 switch (YearOfExp)

 {

 case int n when (n <= 1):

 designation = "Fresher";

 break;

 case int n when (n >= 2 && n <= 5):

 designation = "Intermediate";

 break;

 default:

 designation = "Expert";

 break;

 }

 return designation;

 }

 }

 class EmployeeStoreHouse<T> where T : IEmployee

 {

 private List<Employee> EmpStore = new List<Employee>();

 public void AddToStore(Employee element)

 {

Chapter 4 Generic Programming

132

 EmpStore.Add(element);

 }

 public void DisplayStore()

 {

 Console.WriteLine("The store contains:");

 foreach (Employee e in EmpStore)

 {

 Console.WriteLine(e.Position());

 }

 }

 }

 class Program

 {

 static void Main(string[] args)

 {

 �Console.WriteLine("***Using constraints in generic

programming.***\n");

 //Employees

 Employee e1 = new Employee("Suresh", 1);

 Employee e2 = new Employee("Jack", 5);

 Employee e3 = new Employee("Jon", 7);

 Employee e4 = new Employee("Michael", 2);

 Employee e5 = new Employee("Amit", 3);

 //Employee StoreHouse

 �EmployeeStoreHouse<Employee> myEmployeeStore = new EmployeeStore

House<Employee>();

 myEmployeeStore.AddToStore(e1);

 myEmployeeStore.AddToStore(e2);

 myEmployeeStore.AddToStore(e3);

 myEmployeeStore.AddToStore(e4);

 myEmployeeStore.AddToStore(e5);

 //Display the Employee Positions in Store

 myEmployeeStore.DisplayStore();

Chapter 4 Generic Programming

133

 Console.ReadKey();

 }

 }

}

�Output

This is the output.

Using constraints in generic programming.

The store contains:

Fresher

Intermediate

Expert

Intermediate

Intermediate

�Q&A Session
4.9  Why am I getting multiple compile-time errors in the following line?

class EmployeeStoreHouse<T> where T : new(),IEmployee

There are currently two issues. First, you haven’t placed the new() constraint as

the last constraint. Second, the Employee class does not have a public parameterless

constructor. Visual Studio gives you a clue about both errors; an error screenshot is

shown in Figure 4-3.

Figure 4-3.  Compile-time error due to improper usage of new() constraint

Chapter 4 Generic Programming

134

The simple remedy is

•	 Place a new() constraint in the last position

•	 Define a public parameterless constructor in the Employee class,

such as

public Employee() { }

4.10  Can I apply constraints on constructors?
When you use a new() constraint for your generic type, you actually place the

constraints on the constructor. For example, in the following code, the type must have a

parameterless constructor.

public class MyClass<T> where T:new()

In this context, it is important to note that you cannot use a “parameterful”

constructor constraint. For example, if you use something like new(int), in the following

code, you get several compile-time errors.

class EmployeeStoreHouse<T> where T : IEmployee,new(int) //Error

One error says,

Error CS0701 'int' is not a valid constraint. A type used as a constraint

must be an interface, a nonsealed class or a type parameter.

4.11  Can I apply multiple interfaces as constraints on a single type?
Yes. For example, if you use the ready-made List class, you see the following.

public class List<[NullableAttribute(2)]T>

 : �ICollection<T>, IEnumerable<T>, IEnumerable, IList<T>,

IReadOnlyCollection<T>, IReadOnlyList<T>, ICollection, IList

 {//some other stuff}

You can see that ICollection<T>, IEnumerable<T>, and IList<T> are applied on

List<T>.

Chapter 4 Generic Programming

135

�Using Covariance and Contravariance
In the discussion on delegates in Chapter 1, you learned that covariance and

contravariance support delegates first appeared in C# 2.0. Since C# 4.0, these concepts

can be applied to generic type parameters, generic interfaces, and generic delegates.

Chapter 1 also explored these concepts with nongeneric delegates. In this chapter, we

continue to explore these concepts with additional cases.

Before going forward, recall the following points.

•	 Covariance and contravariance deal with type conversion with

arguments and return types.

•	 In .NET 4 onward, you can use these concepts in generic delegates and

generic interfaces. (In earlier versions, you got compile-time errors.)

•	 Contravariance is generally defined as an adjustment or

modification. When you try to implement these concepts in the

coding world, you understand the following truths (or similar truths).

•	 All soccer players are athletes, but the reverse is not true (because

there are many athletes who play golf, basketball, hockey, etc.)

Similarly, you can say that all buses or trains are vehicles, but the

reverse is not necessarily true.

•	 In programming terminology, all derived classes are of type-based

classes, but the reverse is not true. For example, suppose that you

have a class called Rectangle that is derived from a class called

Shape. Then you can say that all Rectangles are Shapes, but the

reverse is not true.

•	 According to MSDN, covariance and contravariance deal with

implicit reference conversion for arrays, delegates, and generic

types. Covariance preserves assignment compatibility, and

contravariance reverses it.

Starting with the .NET Framework 4, in C#, there are keywords to mark the generic

type parameters of interfaces and delegates as covariant or contravariant. For covariant

interfaces and delegates, you see the use of the out keyword (to indicate that values are

coming out). Contravariant interfaces and delegates are associated with the in keyword

(to indicate that values are going in).

Chapter 4 Generic Programming

136

Consider a built-in C# construct. Let’s check the definition of IEnumerable<T> in

Visual Studio, as shown in Figure 4-4.

You can see that out is associated with IEnumerable. It simply means that you

can assign IEnumerable<DerivedType> to IEnumerable<BaseType>. This is why you

can assign IEnumerable<string> to IEnumerable<object>. So, you can say that

IEnumerable<T> is a covariant on T.

Now check the definition of the Action<T> delegate in Visual Studio, as shown in

Figure 4-5.

Figure 4-4.  Partial screenshot of IEnumerable<T> interface from Visual Studio 2019

Figure 4-5.  Partial screenshot of Action<T> delegate from Visual Studio 2019

Chapter 4 Generic Programming

137

Alternatively, you can check the definition of the IComparer<T> interface in Visual

Studio, as shown in Figure 4-6.

You can see that in is associated with the Action delegate and the

IComparer interface. It simply means that you can assign Action<BaseType> to

Action<DerivedType>. So, you can say that Action<T> is contravariant on T.

Similarly, since the type parameter is contravariant in the IComparer interface,

you can use either the actual type you specified or any type that is more general (or less

derived).

�Q&A Session
4.12  In a Func delegate, I see the presence of both the in and out parameters.

For example, in Func<in T, out TResult> or Func<in T1, in T2, out TResult>, what
should I interpret from these definitions?

It simply tells you that Func delegates have covariant return types and contravariant

parameter types.

4.13  What do you mean by “assignment compatibility”?
Here is an example where you can assign a more specific type (or a derived type) to a

compatible less-specific type. For example, the value of an integer variable can be stored

in an object variable, like this:

 int i = 25;

 object o = i;//Assignment Compatible

Figure 4-6.  Partial screenshot of IComparer<T> interface from Visual Studio 2019

Chapter 4 Generic Programming

138

�Covariance with Generic Delegate
Let’s examine covariance with a generic delegate. In the following demonstration, I’m

declaring a generic delegate with covariant return type, as follows.

delegate TResult CovDelegate<out TResult>();

In this example, Vehicle is the parent class, and Bus is the derived class, so you see

the hierarchy. (I did not put any additional methods/code in these classes because they

are not required for this demonstration.)

class Vehicle

{

 //Some code if needed

}

class Bus : Vehicle

{

 //Some code if needed

 }

In addition, you see the presence of the following two static methods:

GetOneVehicle() and GetOneBus(). The first one returns a Vehicle object and the

second one returns a Bus object.

private static Vehicle GetOneVehicle()

{

 Console.WriteLine("Creating one vehicle and returning it.");

 return new Vehicle();

}

private static Bus GetOneBus()

{

 Console.WriteLine("Creating one bus and returning the bus.");

Chapter 4 Generic Programming

139

The following segment of code is straightforward and easy to understand because

they match the delegate signature.

CovDelegate<Vehicle> covVehicle = GetOneVehicle;

covVehicle();

CovDelegate<Bus> covBus = GetOneBus;

covBus();

Now comes the interesting part. Note the following assignment.

covVehicle = covBus;

This assignment doesn’t raise any compilation errors because I’m using the delegate

with a covariant return type. But it is important to note that if you do not make the

delegate’s return type covariant by using the out parameter, this assignment causes the

following compile-time error.

Error CS0029 Cannot implicitly convert type

'CovarianceWithGenericDelegates.CovDelegate<CovarianceWithGenericDelegates.

Bus>' to 'CovarianceWithGenericDelegates.CovDelegate<CovarianceWithGeneric

Delegates.Vehicle>'

�Demonstration 9
Go through the complete demonstration. Refer to the supporting comments to help you

understand.

using System;

namespace CovarianceWithGenericDelegates

{

 //A generic delegate with covariant return type

 //(Notice the use of 'out' keyword)

 delegate TResult CovDelegate<out TResult>();

 //Here 'out' is not used(i.e. it is non-covariant)

 //delegate TResult CovDelegate<TResult>();

 class Vehicle

 {

Chapter 4 Generic Programming

140

 //Some code if needed

 }

 class Bus : Vehicle

 {

 //Some code if needed

 }

 class Program

 {

 static void Main(string[] args)

 {

 �Console.WriteLine("***Testing covariance with a Generic

Delegate.***");

 Console.WriteLine("Normal usage:");

 CovDelegate<Vehicle> covVehicle = GetOneVehicle;

 covVehicle();

 CovDelegate<Bus> covBus = GetOneBus;

 covBus();

 //Testing Covariance

 �//covBus to covVehicle (i.e. more specific-> more general) is

//allowed through covariance

 Console.WriteLine("Using covariance now.");

 �//Following assignment is Ok, if you use 'out' in delegate

//definition Otherwise, you'll receive compile-time error

 covVehicle = covBus;//Still ok

 covVehicle();

 Console.WriteLine("End covariance testing.\n");

 Console.ReadKey();

 }

 private static Vehicle GetOneVehicle()

 {

 Console.WriteLine("Creating one vehicle and returning it.");

 return new Vehicle();

 }

 private static Bus GetOneBus()

Chapter 4 Generic Programming

141

 {

 Console.WriteLine("Creating one bus and returning the bus.");

 return new Bus();

 }

 }

}

�Output
This is the output.

Testing covariance with a Generic Delegate.
Normal usage:

Creating one vehicle and returning it.

Creating one bus and returning the bus.

Using covariance now.

Creating one bus and returning the bus.

End covariance testing.

�Covariance with Generic Interfaces
Let’s examine covariance with a generic interface. In this example, I use another built-in

construct in C# called IEnumerable<T>. This is an interface that provides the foundation

of the most important features in C#. IEnumerable<T> can be used in a foreach loop if you

want to do something meaningful on each item in a collection and treat them one by one.

Nearly every class in the .NET Framework that contains multiple elements implements this

interface. For example, the commonly used List class implements this interface.

�Demonstration 10
Like the previous demonstration, Vehicle is the parent class and Bus is the derived class

in this example, but this time, I placed an instance method called ShowMe() in each of

them. You’ve seen that in IEnumerable<T>, T is covariant, so this time, I can apply the

following assignments.

IEnumerable<Vehicle> vehicleEnumerable= busEnumerable;

Chapter 4 Generic Programming

142

busEnumerable is an IEnumerable<Bus> object and may look like the following.

IEnumerable<Bus> busEnumerable=new List<Bus>();

In many real-life applications, it’s a common practice to use methods that return

IEnumerable<T>. This is useful when you do not want to disclose the actual concrete

type to others and have the ability to loop through the items.

Now go through the complete demonstration, and refer to the supporting comments

if you need to.

using System;

using System.Collections.Generic;

namespace CovarianceWithGenericInterface

{

 class Vehicle

 {

 public virtual void ShowMe()

 {

 �Console.WriteLine("Vehicle.ShowMe().The hash code is :

" + GetHashCode());

 }

 }

 class Bus : Vehicle

 {

 public override void ShowMe()

 {

 �Console.WriteLine("Bus.ShowMe().Here the hash code is :

" + GetHashCode());

 }

 }

 class Program

 {

 static void Main(string[] args)

 {

 //Covariance Example

Chapter 4 Generic Programming

143

 �Console.WriteLine("***Using Covariance with Generic

Interface.***\n");

 �Console.WriteLine("**Remember that T in IEnumerable<T> is

covariant");

 //Some Parent objects

 //Vehicle vehicle1 = new Vehicle();

 //Vehicle vehicle2 = new Vehicle();

 //Some Bus objects

 Bus bus1 = new Bus();

 Bus bus2 = new Bus();

 //Creating a child List

 //List<T> implements IEnumerable<T>

 List<Bus> busList = new List<Bus>();

 busList.Add(bus1);

 busList.Add(bus2);

 IEnumerable<Bus> busEnumerable = busList;

 /*
 �An object which was instantiated with a more derived type

argument (Bus) is assigned to an object instantiated with a

less derived type argument(Vehicle).Assignment compatibility

is preserved here.

 */

 IEnumerable<Vehicle> vehicleEnumerable = busEnumerable;

 foreach (Vehicle vehicle in vehicleEnumerable)

 {

 vehicle.ShowMe();

 }

 Console.ReadKey();

 }

 }

}

Chapter 4 Generic Programming

144

�Output
This is the output.

Using Covariance with Generic Interface.

**Remember that T in IEnumerable<T> is covariant

Bus.ShowMe().Here the hash code is : 58225482

Bus.ShowMe().Here the hash code is : 54267293

�Contravariance with Generic Delegates
Let’s examine contravariance with a generic delegate. In this demonstration, I’m

declaring a generic contravariant delegate, as follows.

delegate void ContraDelegate<in T>(T t);

Again, Vehicle is the parent class, and Bus is the derived class, and each of them

contains a method called ShowMe(). You see the following code segment.

class Vehicle

{

 public virtual void ShowMe()

 {

 Console.WriteLine(" Vehicle.ShowMe()");

 }

}

class Bus : Vehicle

{

 public override void ShowMe()

 {

 Console.WriteLine(" Bus.ShowMe()");

 }

}

In addition to these classes, you see the presence of the following two static methods:

ShowVehicleType() and ShowBusType(). (The first one invokes the ShowMe() from a

Vehicle object and second one invokes ShowMe() from a Bus object.)

Chapter 4 Generic Programming

145

private static void ShowVehicleType(Vehicle vehicle)

{

 vehicle.ShowMe();

}

private static void ShowBusType(Bus bus)

{

 bus.ShowMe();

}

The following segment of code is straightforward and easy to understand because

they match the delegate signature. (The output is also shown in the comments.)

ContraDelegate<Vehicle> contraVehicle = ShowVehicleType;

contraVehicle(obVehicle); // Vehicle.ShowMe()

ContraDelegate<Bus> contraBus = ShowBusType;

contraBus(obBus); // Bus.ShowMe()

Now comes the interesting part, which is opposite to covariance. Note the following

assignment.

contraBus = contraVehicle;

This assignment doesn’t raise any compilation errors because I’m using a

contravariant delegate. But it is important to note that if you do not make the delegate
contravariant by using the in parameter, this assignment causes the following
compile-time error.

Error CS0029 Cannot implicitly convert type

'ContravarianceWithGenericDelegates.ContraDelegate<ContravarianceWithGeneric

Delegates.Vehicle>' to 'ContravarianceWithGenericDelegates.ContraDelegate

<ContravarianceWithGenericDelegates.Bus>'

�Demonstration 11
Now go through the complete demonstration, and refer to the supporting comments to

help you understand.

using System;

namespace ContravarianceWithGenericDelegates

Chapter 4 Generic Programming

146

{

 // A generic contravariant delegate

 delegate void ContraDelegate<in T>(T t);

 // A generic non-contravariant delegate

 //delegate void ContraDelegate<T>(T t);

 class Vehicle

 {

 public virtual void ShowMe()

 {

 Console.WriteLine(" Vehicle.ShowMe()");

 }

 }

 class Bus : Vehicle

 {

 public override void ShowMe()

 {

 Console.WriteLine(" Bus.ShowMe()");

 }

 }

 class Program

 {

 static void Main(string[] args)

 {

 �Console.WriteLine("*** Testing Contra-variance with Generic

Delegates.***");

 Vehicle obVehicle = new Vehicle();

 Bus obBus = new Bus();

 Console.WriteLine("Normal usage:");

 ContraDelegate<Vehicle> contraVehicle = ShowVehicleType;

 contraVehicle(obVehicle);

 ContraDelegate<Bus> contraBus = ShowBusType;

 contraBus(obBus);

 Console.WriteLine("Using contravariance now.");

 /*
 Using general type to derived type.

Chapter 4 Generic Programming

147

 Following assignment is Ok, if you use 'in' in delegate definition.

 Otherwise, you'll receive compile-time error.

 */

 contraBus = contraVehicle;//ok

 contraBus(obBus);

 Console.ReadKey();

 }

 private static void ShowVehicleType(Vehicle vehicle)

 {

 vehicle.ShowMe();

 }

 private static void ShowBusType(Bus bus)

 {

 bus.ShowMe();

 }

 }

}

�Output

This is the output.

*** Testing Contra-variance with Generic Delegates.***
Normal usage:

 Vehicle.ShowMe()

 Bus.ShowMe()

Using contravariance now.

 Bus.ShowMe()

�Contravariance with Generic Interface
Now you understand covariance and contravariance. You’ve seen the uses of covariance
and contravariance with generic delegates, and an implementation of covariance using
a generic interface. I’m leaving the remaining case as homework, where you need to
write a complete program and implement the concept of contravariance using a generic
interface.

Chapter 4 Generic Programming

148

I’m providing partial code segments that can help you implement it. If you want, you
can verify your implementation using the following code segments as a reference. You
can also refer to the associated comments for a better understanding.

�Partial Implementation
Here is a generic contravariant interface.

// Contravariant interface
interface IContraInterface<in T>{ }
// Following interface is neither covariant nor contravariant
//interface IContraInterface< T> { }
class Implementor<T>: IContraInterface<T> { }

Here is an inheritance hierarchy.

class Vehicle
{
 // Some code if needed
}
class Bus : Vehicle
{
 // Some code if needed
}

Here is the key assignment.

IContraInterface<Vehicle> vehicleOb = new Implementor<Vehicle>();
IContraInterface<Bus> busOb = new Implementor<Bus>();
// Contravarince allows the following
// but you'll receive a compile-time error
// if you do not make the interface contravariant using 'in'

busOb = vehicleOb;

�Q&A Session
4.14  When I use covariance, it looks as if I’m using a simple polymorphism

technique. For example, in the previous demonstration, you used the following line.

IEnumerable<Vehicle> vehicleEnumerable = busEnumerable;

Chapter 4 Generic Programming

149

Is this correct?
Yes.

4.15  Can I override a generic method?
Yes. You need to follow the same rules that you apply for nongeneric methods. Let’s

look at demonstration 12.

�Demonstration 12
In this demonstration, BaseClass<T> is the parent class. It has a method called MyMethod

that accepts T as a parameter, and it’s return type is also T. DerivedClass<T> derives

from this parent class and overrides this method.

using System;

namespace MethodOverridingDemo

{

 class BaseClass<T>

 {

 public virtual T MyMethod(T param)

 {

 Console.WriteLine("Inside BaseClass.BaseMethod()");

 return param;

 }

 }

 class DerivedClass<T>: BaseClass<T>

 {

 public override T MyMethod(T param)

 {

 �Console.WriteLine("Here I'm inside of DerivedClass.

DerivedMethod()");

 return param;

 }

 }

 class Program

 {

 static void Main(string[] args)

Chapter 4 Generic Programming

150

 {

 Console.WriteLine("***Overriding a virtual method.***\n");

 BaseClass<int> intBase = new BaseClass<int>();

 // Invoking Parent class method

 �Console.WriteLine($"Parent class method returns {intBase.

MyMethod(25)}");//25

 // Now pointing to the child class method and invoking it.

 intBase = new DerivedClass<int>();

 �Console.WriteLine($"Derived class method returns {intBase.

MyMethod(25)}");//25

 // The following will cause compile-time error

 //intBase = new DerivedClass<double>(); // error

 Console.ReadKey();

 }

 }

}

�Output

This is the output.

Overriding a virtual method.

Inside BaseClass.BaseMethod()

Parent class method returns 25

Here I'm inside of DerivedClass.DerivedMethod()

Derived class method returns 25

�Analysis

You can see that by following a simple polymorphism, I’m using the parent class

reference (intBase) to point to the child class object. There was no issue for this kind of

coding because both cases dealt with int types only. But the following lines of code with

comments are easy to understand because using intBase, you cannot point to an object

that is dealing with different types (double in this case).

// The following will cause compile-time error

//intBase = new DerivedClass<double>(); // error

Chapter 4 Generic Programming

151

To print output messages, I used a string interpolation technique. I used it only for a

change, but in cases like this, you need to use C# 6.0 or above; otherwise, you can use the

traditional approach.

�Q&A Session
4.16  Can I overload a generic method?
Yes. In this case, also you need to follow the same rules that you apply for nongeneric

methods, but you have to be careful with methods that accept type parameters. In such

cases, the type difference is not considered on generic types; instead, it depends on the type

argument that you substitute for a type parameter.

4.17  You said that the type difference is not considered on generic types; instead,
it depends on the type argument that you substitute for the type parameter. Can you
please elaborate?

I meant that sometimes it may appear that you have followed the rule of overloading

perfectly, but there is something more to consider when you overload a generic method

that accepts type parameters.

You know that for overloading, the number and/or type parameters are different.

So, if you have following two methods in your class, you can say that it’s an example of

overloading.

public void MyMethod2(int a, double b) { // some code };

public void MyMethod2(double b, int a) { // some code };

Now consider the following code segment, which involves generic type parameters.

class MyClass<T,U>

{

 public void MyMethod(T param1, U param2)

 {

 Console.WriteLine("Inside MyMethod(T param1, U param2)");

 }

 public void MyMethod(U param1, T param2)

 {

 Console.WriteLine("Inside MyMethod(U param1, T param2)");

 }

}

Chapter 4 Generic Programming

152

It may appear that you have two overloaded versions of MyMethod, because the

order of the generic type parameters differs. But there is potential ambiguity, which will

be clear to you when you exercise the following code segments.

MyClass<int, double> object1 = new MyClass<int, double>();

object1.MyMethod(1, 2.3); // ok

MyClass<int, int> object2 = new MyClass<int, int>();

// Ambiguous call

object2.MyMethod(1, 2); // error

For this segment of code, you get the following compile-time error (for the line

marked with // error).

CS0121 The call is ambiguous between the following methods or properties:

'MyClass<T, U>.MyMethod(T, U)' and 'MyClass<T, U>.MyMethod(U, T)'

�Demonstration 13
This is the full demonstration.

using System;

namespace MethodOverloadingDemo

{

 class MyClass<T,U>

 {

 public void MyMethod(T param1, U param2)

 {
 Console.WriteLine("Inside MyMethod(T param1, U param2)");
 }
 public void MyMethod(U param1, T param2)
 {
 Console.WriteLine("Inside MyMethod(U param1, T param2)");
 }
 public void MyMethod2(int a, double b)
 {
 Console.WriteLine("Inside MyMethod2(int a, double b).");
 }

Chapter 4 Generic Programming

153

 public void MyMethod2(double b, int a)
 {
 Console.WriteLine("MyMethod2(double b, int a) is called here.");
 } }

 class Program
 {
 static void Main(string[] args)
 {
 Console.WriteLine("***Method overloading demo.***\n");
 MyClass<int, double> object1 = new MyClass<int, double>();
 object1.MyMethod(1, 2.3);//ok
 object1.MyMethod2(1, 2.3);//ok
 object1.MyMethod2(2.3, 1);//ok
 MyClass<int, int> object2 = new MyClass<int, int>();
 // Ambiguous call
 object2.MyMethod(1, 2); // error
 Console.ReadKey();
 }
 }
}

�Output
Again, you get the following compile-time error.

CS0121 The call is ambiguous between the following methods or properties:

'MyClass<T, U>.MyMethod(T, U)' and 'MyClass<T, U>.MyMethod(U, T)'

You can comment out the ambiguous call, as follows, and then compile and run the

program.

//object2.MyMethod(1, 2);//error

This time, you get the following output.

Method overloading demo.

Inside MyMethod(T param1, U param2)

Inside MyMethod2(int a, double b).

MyMethod2(double b, int a) is called here.

Chapter 4 Generic Programming

154

�Self-Referencing Generic Types
Sometimes you may need to compare two instances of a class. In a case like this, you

have two options.

•	 Use the built-in constructs.

•	 Write your own comparison method.

When you are interested in using built-in constructs, you have multiple options. For

example, you can use either the CompareTo method of IComparable<T> or the Equals

method of IEquitable<T>. You may note that a nongeneric IComparable is also available

in C#.

Here is information about CompareTo from Visual Studio.

//

// Summary:

// Compares the current instance with another object of the same

// type and returns an integer that indicates whether the current instance

// precedes, follows, or occurs in the same position in the sort

// order as the other object.

//

// Parameters:

// other:

// An object to compare with this instance.

//

// Returns:

// A value that indicates the relative order of the objects being

// compared. The return value has these meanings: Value Meaning Less

// than zero This instance precedes other in the sort order. Zero

// This instance occurs in the same position in the sort order as other.

// Greater than zero This instance follows other in the sort order.

 int CompareTo([AllowNull] T other);

Here is information about Equals from Visual Studio.

//

// Summary:

Chapter 4 Generic Programming

155

// Indicates whether the current object is equal to another object of

// the same type.

//

// Parameters:

// other:

// An object to compare with this object.

//

// Returns:

// true if the current object is equal to the other parameter;

// otherwise, false.

 bool Equals([AllowNull] T other);

If your class implements any of these interfaces, you can use these methods and

override them as you need. These interfaces are available in the System namespace, and

they are implemented by built-in types like int, double, and string.

In many cases, however, you may want to write your own comparison method. I do

this in demonstration 14.

A type can name itself as the concrete type when it closes the type argument.

�Demonstration 14
In this demonstration, the Employee class implements IIdenticalEmployee<T>, which

has an abstract method called CheckEqualityWith. Let’s suppose that in your Employee

class, you have employee IDs and department names. Once I instantiate objects from the

Employee class, my task is to compare these objects.

For comparison purposes, I simply check whether the deptName and employeeID are

the same for two employees. If they match, the employees are the same. (Using the word

same, I mean only the content of these objects, not the reference to the heap.)

This is the comparison method.

public string CheckEqualityWith(Employee obj)

{

 if (obj == null)

 {

 return "Cannot Compare with a Null Object";

 }

Chapter 4 Generic Programming

156

 else

 {

 �if (this.deptName == obj.deptName && this.employeeID == obj.

employeeID)

 {

 return "Same Employee.";

 }

 else

 {

 return "Different Employees.";

 }

 }

}

Now go through the complete implementation and output.

using System;

namespace SelfReferencingGenericTypeDemo

{

 interface IIdenticalEmployee<T>

 {

 string CheckEqualityWith(T obj);

 }

 class Employee : IIdenticalEmployee<Employee>

 {

 string deptName;

 int employeeID;

 public Employee(string deptName, int employeeId)

 {

 this.deptName = deptName;

 this.employeeID = employeeId;

 }

 public string CheckEqualityWith(Employee obj)

 {

Chapter 4 Generic Programming

157

 if (obj == null)

 {

 return "Cannot Compare with a null Object";

 }

 else

 {

 �if (this.deptName == obj.deptName && this.employeeID ==

obj.employeeID)

 {

 return "Same Employee.";

 }

 else

 {

 return "Different Employees.";

 }

 }

 }

 }

 class Program

 {

 static void Main(string[] args)

 {

 �Console.WriteLine("**Self-referencing generic type

demo.***\n");

 �Console.WriteLine("***We are checking whether two employee

objects are same or different.***");

 Console.WriteLine();

 Employee emp1 = new Employee("Chemistry", 1);

 Employee emp2 = new Employee("Maths", 2);

 Employee emp3 = new Employee("Comp. Sc.", 1);

 Employee emp4 = new Employee("Maths", 2);

 Employee emp5 = null;

 �Console.WriteLine("Comparing emp1 and emp3 :{0}", emp1.

CheckEqualityWith(emp3));

Chapter 4 Generic Programming

158

 �Console.WriteLine("Comparing emp2 and emp4 :{0}", emp2.

CheckEqualityWith(emp4));

 �Console.WriteLine("Comparing emp2 and emp5 :{0}", emp2.

CheckEqualityWith(emp5));

 Console.ReadKey();

 }

 }

}

�Output

This is the output.

Self-referencing generic type demo.*

We are checking whether two employee objects are same or different.

Comparing emp1 and emp3 :Different Employees.

Comparing emp2 and emp4 :Same Employee.

Comparing emp2 and emp5 :Cannot Compare with a null Object

�Analysis

This example shows you that a type can name itself as a concrete type when it closes

the type argument. It demonstrates how to use a self-referencing generic type. Again,

by using the word same this example, I meant only the content of the objects, not the

reference to the heap.

�Q&A Session
4.18  Can you summarize the key usage of generics?
You can promote type-safety without creating lots of types that are very similar and

particularly differ only by the types they use. As a result, you can avoid runtime errors

and reduce costs due to boxing and unboxing.

4.19  How do static variables work in context of generic programming?

Chapter 4 Generic Programming

159

Static data is unique for each of the closed types. Consider the following program

and output for your reference.

�Demonstration 15
In this demonstration, let’s focus on the count variable and see how it increments when

the MyGenericClass<T> generic class is instantiated with different types.

using System;

namespace TestingStaticData

{

 class MyGenericClass<T>

 {

 public static int count;

 public void IncrementMe()

 {

 Console.WriteLine($"Incremented value is : {++count}");

 }

 }

 class Program

 {

 static void Main(string[] args)

 {

 �Console.WriteLine("***Testing static in the context of generic

programming.***");

 MyGenericClass<int> intOb = new MyGenericClass<int>();

 Console.WriteLine("\nUsing intOb now.");

 intOb.IncrementMe();//1

 intOb.IncrementMe();//2

 intOb.IncrementMe();//3

 Console.WriteLine("\nUsing strOb now.");

 MyGenericClass<string> strOb = new MyGenericClass<string>();

 strOb.IncrementMe();//1

 strOb.IncrementMe();//2

Chapter 4 Generic Programming

160

 Console.WriteLine("\nUsing doubleOb now.");

 MyGenericClass<double> doubleOb = new MyGenericClass<double>();

 doubleOb.IncrementMe();//1

 doubleOb.IncrementMe();//2

 MyGenericClass<int> intOb2 = new MyGenericClass<int>();

 Console.WriteLine("\nUsing intOb2 now.");

 intOb2.IncrementMe();//4

 intOb2.IncrementMe();//5

 Console.ReadKey();

 }

 }

}

�Output

This is the output.

Testing static in the context of generic programming.

Using intOb now.

Incremented value is : 1

Incremented value is : 2

Incremented value is : 3

Using strOb now.

Incremented value is : 1

Incremented value is : 2

Using doubleOb now.

Incremented value is : 1

Incremented value is : 2

Using intOb2 now.

Incremented value is : 4

Incremented value is : 5

Chapter 4 Generic Programming

161

�Q&A Session
4.20  What are the important restrictions in using generics?
Here are some important restrictions to note.

•	 Static data is unique for each of the closed types but not for different

constructed types.

•	 You cannot use an external modifier in a generic method. So,

following segment of code

using System;

using System.Runtime.InteropServices;

class GenericClassDemo2<T>

{

 [DllImport("avifil32.dll")] // error in generic method

 private static extern void AVIFileInit();

}

raises the following compile-time error:

Error CS7042 The DllImport attribute cannot be applied to a

method that is generic or contained in a generic type.

•	 You cannot use a pointer type as type arguments. So, the last line in

following code segment

class GenericClassDemo2<T>

{

 static unsafe void ShowMe()

 {

 int a = 10; // ok

 int* p; // ok

 p = &a; // ok

 T* myVar; // error

 }

}

Chapter 4 Generic Programming

162

raises the following compile-time error:

Error CS0208 Cannot take the address of, get the size of, or

declare a pointer to a managed type ('T')

•	 In Q&A Session question 4.9, you saw that if you have multiple

constraints, the new() constraint must be placed at the end.

�Final Words
I hope that this chapter demystified the key features of generic programming. At first, generic

syntax may look little bit overwhelming, but practice and repeated use of these concepts will

help you master them, and you’ll be able to produce high-quality software using C#.

Now let’s jump into the next chapter, where you’ll learn about thread programming.

�Summary
This chapter addressed the following key questions.

•	 What is a generic program? And why is it important?

•	 What are the advantages of generic programming over nongeneric

programming?

•	 Why is the default keyword useful in the context of generics? And

how can it be used in my program?

•	 How do you use built-in delegates—Func, Action, and Predicate—in

a program?

•	 How do you impose constraints in generic programming?

•	 How do you use covariance and contravariance with generic

delegates and interfaces?

•	 How do you overload a generic method? And why should you be careful?

•	 How do you override a generic method?

•	 How do you use a self-referencing generic type?

•	 How do static variables behave in a generic program?

•	 What are some of the key restrictions in generics?

Chapter 4 Generic Programming

163
© Vaskaran Sarcar 2020
V. Sarcar, Getting Started with Advanced C#, https://doi.org/10.1007/978-1-4842-5934-4_5

CHAPTER 5

Thread Programming
In today’s world, everyone is familiar with multitasking, which simply indicates that

you can do multiple things in parallel. Consider a common scenario. For example, as

I am writing this chapter using Microsoft Word on my laptop, I’m listening to a very

calm piece of music in Windows Media Player. In much the same way, you can execute

different methods in a C# application simultaneously. To implement this concept, you

need to be familiar with multithreading.

In earlier days, computers had a single processor, but nowadays, the scenario has

changed a lot. Most computers in today’s world have multiple processors. For example,

at the time of writing, I’m using a dual core system with four logical processors; yet in

today’s world, this is not considered a superfast computer, because there are machines

with large numbers of processors (obviously those are expensive) and have much more

computing power. Still, I can execute some of my work on another superfast computer

if it is connected to my computer over a network. So, it is possible to use the computing

power of other machines. But the fact is that unless you structure your code to run on

multiple processors, you are not using the machine’s full computing potential. In this

chapter, you will become familiar with multithreading, and you will learn how to use it

effectively. Let’s start.

�Foundations in Thread Programming
Most of the programs that you have seen so far had a single sequential flow of control

(i.e., once the program started executing, it went through all statements sequentially

until the end). As a result, at any particular moment, there is only one statement that is

under execution. A thread is similar to a program. It has a single flow of control. It also

has a body between the starting point and end point, and it executes the commands

sequentially. Each program has at least one thread.

https://doi.org/10.1007/978-1-4842-5934-4_5#ESM

164

In C#, you can have multiple flows of control in a program. In those cases, each flow

of control is called a thread, and these threads can run in parallel. In a multithreaded

environment, each thread has a unique flow of execution. It’s a programming

paradigm where a program is divided into multiple subprograms (or parts) that can be

implemented in parallel. But, if the computer has only one processor, how can it perform

multiple things in parallel? The processor switches among these subprograms (or

segments of code) very fast, so it appears to the human eye that all of them are executing

simultaneously.

In simple words, when the OS divides processor execution time among different

applications, the scenario is multitasking, and when the OS divides the execution time

among different threads within a single application, it is called multithreading. This is

why multithreading is considered a special kind of multitasking.

In this context, it is important for you to review the differences between a process

and a thread in any theoretical operating system book. For your reference, Table 5-1

highlights some key distinctions.

Table 5-1.  Comparisons Between a Process and a Thread

Process Thread

Unit of allocation. Unit of execution.

Architectural construct. Coding construct does not affect architecture.

Each process has one or more thread. Each thread belongs to one process.

Interprocess communication (commonly known

as IPC) is expensive due to context switching.

Interthread communication is cheap, can use

process memory and may not need context

switch.

Secure: one process cannot corrupt another

process.

Not secure: a thread can write to the memory

used by another thread.

Managing a multithreaded environment can be challenging, but you can complete
tasks much faster and reduce overall idle time significantly. Generally, in an automated
environment, a computer’s input is much faster than the user’s keyboard input. Or, when you
transfer data over a network, the network transmission rate can be slower than the receiving
computer’s consumption rate. If you need to wait for each task to finish before you can start the
next one, the overall idle time will be higher. A multithreaded environment is always a better
choice in cases like these. C# can help you model a multithreaded environment efficiently.

Chapter 5 Thread Programming

165

Figure 5-1 demonstrates a common scenario in a multithreaded program, where the

main thread creates two more threads—threadOne and threadTwo—and all threads are

running concurrently.

Figure 5-1.  In a multithreaded program, the main thread creates two more
threads, and all of them are running concurrently

POINTS TO REMEMBER

The core aim of multithreading is that you can execute independent segments of code in

separate threads, so that you can complete a task faster.

In the .NET Framework, you can have both foreground and background threads.

When you create a thread, it’s a foreground thread by default. But you can convert a

foreground thread to a background thread. The key difference is that when a foreground

thread terminates, the associated background thread(s) are stopped too.

Chapter 5 Thread Programming

166

�Q&A Session
5.1  In Figure 5-1, I’m seeing the term “context switching.” What does it mean in

this context?
In general, many threads can run in parallel on your computer. The computer allows

one thread to run in one processor for a time, and then it can suddenly switch to a

different one. This decision is made by different factors. Normally, all threads have equal

priority and switching among them is performed nicely. Switching between threads is

called context switching. It also enables you to store the state of the current thread (or

process) so that you can resume execution from this point later.

5.2  What is the key advantage of a multithreaded environment over a single
threaded environment?

In a single threaded environment, if the thread is blocked, the entire program is

halted, which is not the case in a multithreaded environment. In addition, you can

reduce overall idle time by making efficient use of the CPU. For example, when one

part of a program is sending a large amount of data over a network, another part of the

program can accept user input, and still another part of the program can validate this

input and prepare the next block of data for sending.

5.3  I have a multicore system, but can multithreading still help me?
There was a time when most computers had a single core; concurrent threads shared

the CPU cycles, but they could not run in parallel. Using the concept of multithreading,

you can reduce overall idle time through efficient use of the CPU. But if you have

multiple processors, you can run multiple threads concurrently. As a result, you can

further enhance the speed of your program.

5.4  A multithreaded program can have multiple parts that run concurrently.
Each of these parts are threads, and each thread can have a separate flow of
execution. Is this correct?

Yes.

�Coding Multithreaded Programs in C#
Before you write a multithreaded program in C#, the first thing to remember is to begin

with

using System.Threading;

Chapter 5 Thread Programming

167

This namespace contains the Thread class, which has different methods. You will see

some of these methods in the upcoming demonstrations. Now comes the next step. To

run a method, let’s say Method1(), in a separate thread, you need to write something like

the following.

Thread threadOne = new Thread(Method1);

threadOne.Start();

Note the previous two lines. If you hover your mouse over the Thread type in Visual

Studio, you see that the Thread class has four different constructors, as follows.

public Thread(ThreadStart start)

public Thread(ParameterizedThreadStart start)

public Thread(ThreadStart start, int maxStackSize)

public Thread(ParameterizedThreadStart start, int maxStackSize)

ThreadStart and ParameterizedThreadStart are delegates. Now let’s investigate

these delegates in detail. From the Visual Studio IDE, you get the following description

for ThreadStart delegate.

//

// Summary:

// Represents the method that executes on a

//System.Threading.Thread.

[ComVisible(true)]

public delegate void ThreadStart();

Similarly, the Visual Studio IDE shows the following description for the

ParameterizedThreadStart delegate.

//

// Summary:

// Represents the method that executes on a

//System.Threading.Thread.

//

// Parameters:

// obj:

// An object that contains data for the thread procedure.

 [ComVisible(false)]

 public delegate void ParameterizedThreadStart(object obj);

Chapter 5 Thread Programming

168

These descriptions show the following points.

•	 Both delegates have void return types.

•	 The ThreadStart delegate does not have a parameter, whereas

ParameterizedThreadStart can accept an object parameter.

You’ll experiment with both delegates shortly. But so far, you have learned to run a

method in different threads; the methods should match either of the delegate signatures.

One last point: In demonstration 1 and demonstration 2, I have used the simplest

version of Start() method which does not take any parameter. Later you’ll also notice the

use of another overloaded version of this method which can take an object parameter. So,

based on your need, you can use any of the following methods:

public void Start();

public void Start(object? parameter);

�Using the ThreadStart Delegate
Let’s start with the ThreadStart delegate. Let’s suppose that you have a method called

Method1, as follows.

static void Method1()

{

 for (int i = 0; i < 10; i++)

 {

 Console.WriteLine("-ThreadOne from Method1() prints {0}", i);

 }}

Since Method1 doesn’t accept any parameters, and it has a void return type, it

matches with the ThreadStart delegate signature. In Chapter 1, you learned that if you

write the following,

ThreadStart delegateObject = new ThreadStart(Method1);

it is equivalent to writing

ThreadStart delegateObject = Method1;

Chapter 5 Thread Programming

169

So, when you pass a ThreadStart delegate object inside a Thread constructor, you

can write something like the following.

Thread threadOne = new Thread(new ThreadStart(Method1));

which is equivalent to writing

Thread threadOne = new Thread(Method1);

Lastly, it’s worth noting the following points.

•	 In the upcoming example, Method1() is a static method. In this case,

you can refer to the method without instantiating any object.

•	 Once you call the Start() method, the thread is created and starts

executing.

•	 If you call the Start() method on a thread that is already running,

you’ll encounter a runtime error that says, System.Threading.

ThreadStateException: ‘Thread is running or terminated; it cannot

restart.’

Let’s look at the last point again. Programmatically, a thread can have several states.

The Start method can change the current instance’s state to ThreadState.Running.

In the Visual Studio2019 IDE, if you hover your mouse and go to the ThreadState

definition, you see the enumeration shown in Figure 5-2, which describes different

thread states.

Chapter 5 Thread Programming

170

All of these are self-explanatory, but you may be interested in the one called

WaitSleepJoin. A thread can enter this blocked state as a result of calling Sleep() or

Join(), or requesting a lock; for example, when you call Wait(), Monitor.Enter(), and

so forth with a proper argument. You’ll learn about this shortly.

�Demonstration 1
In the following demonstration, there are two static methods: Method1 and Method2.

These methods match with the signature of the ThreadStart delegate. As discussed in the

“Foundations in Thread Programming” section, I’m running them in separate threads.

Figure 5-2.  Different states of a thread in C#

Chapter 5 Thread Programming

171

POINTS TO REMEMBER

In this chapter, for some initial demonstrations, you see hard-coded lines in method bodies,

such as

Console.WriteLine("-ThreadOne from Method1() prints {0}", i);

Or,

Console.WriteLine("--ThreadTwo from Method2() prints 2.0{0}", i);

Ideally, you should not hard-code thread details like this because in a multithreaded

environment, Method1( ) can be executed in different threads. But if you set a thread name,

then you can write something like the following.

Console.WriteLine("-{0} from Method1() prints {1}", Thread.CurrentThread.

Name, i);

Or, if you prefer to use string interpolation, you may write something like the following.

Console.WriteLine($"{Thread.CurrentThread.Name} from MyMethod() prints {i}");

Here, I go step by step. I have not introduced the Name property from the Thread class yet.

For simplicity, I am executing Method1( ) using the threadOne object, Method2() using the

threadTwo object, and so forth.

This is the complete demonstration.

using System;

using System.Threading;

namespace ThreadProgrammingEx1

{

 class Program

 {

 static void Main(string[] args)

 {

 Console.WriteLine("***Thread Demonstration-1****");

 Console.WriteLine("Main thread has started.");

 Thread threadOne = new Thread(Method1);

Chapter 5 Thread Programming

172

 // Same as

 /* Thread threadOne = new Thread(new ThreadStart(Method1));*/

 Thread threadTwo = new Thread(Method2);

 // Same as

 /* Thread threadTwo = new Thread(new ThreadStart(Method2));*/

 Console.WriteLine("Starting threadOne shortly.");

 // threadOne starts

 threadOne.Start();

 Console.WriteLine("Starting threadTwo shortly.");

 // threadTwo starts

 threadTwo.Start();

 �Console.WriteLine("Control comes at the end of Main()

method.");

 Console.ReadKey();

 }

 static void Method1()

 {

 for (int i = 0; i < 10; i++)

 {

 Console.WriteLine("-ThreadOne from Method1() prints {0}", i);

 }

 }

 static void Method2()

 {

 for (int i = 0; i < 10; i++)

 {

 �Console.WriteLine("--ThreadTwo from Method2() prints

2.0{0}", i);

 }

 }

 }

}

Chapter 5 Thread Programming

173

�Output

This is one possible output.

Thread Demonstration-1*
Main thread has started.

Starting threadOne shortly.

Starting threadTwo shortly.

-ThreadOne from Method1() prints 0

-ThreadOne from Method1() prints 1

-ThreadOne from Method1() prints 2

-ThreadOne from Method1() prints 3

-ThreadOne from Method1() prints 4

-ThreadOne from Method1() prints 5

-ThreadOne from Method1() prints 6

-ThreadOne from Method1() prints 7

-ThreadOne from Method1() prints 8

Control comes at the end of Main() method.

--ThreadTwo from Method2() prints 2.00

--ThreadTwo from Method2() prints 2.01

-ThreadOne from Method1() prints 9

--ThreadTwo from Method2() prints 2.02

--ThreadTwo from Method2() prints 2.03

--ThreadTwo from Method2() prints 2.04

--ThreadTwo from Method2() prints 2.05

--ThreadTwo from Method2() prints 2.06

--ThreadTwo from Method2() prints 2.07

--ThreadTwo from Method2() prints 2.08

--ThreadTwo from Method2() prints 2.09

This is another possible output.

Thread Demonstration-1*
Main thread has started.

Starting threadOne shortly.

Starting threadTwo shortly.

-ThreadOne from Method1() prints 0

Chapter 5 Thread Programming

174

-ThreadOne from Method1() prints 1

-ThreadOne from Method1() prints 2

Control comes at the end of Main() method.

-ThreadOne from Method1() prints 3

-ThreadOne from Method1() prints 4

-ThreadOne from Method1() prints 5

-ThreadOne from Method1() prints 6

-ThreadOne from Method1() prints 7

-ThreadOne from Method1() prints 8

-ThreadOne from Method1() prints 9

--ThreadTwo from Method2() prints 2.00

--ThreadTwo from Method2() prints 2.01

--ThreadTwo from Method2() prints 2.02

--ThreadTwo from Method2() prints 2.03

--ThreadTwo from Method2() prints 2.04

--ThreadTwo from Method2() prints 2.05

--ThreadTwo from Method2() prints 2.06

--ThreadTwo from Method2() prints 2.07

--ThreadTwo from Method2() prints 2.08

--ThreadTwo from Method2() prints 2.09

�Analysis

I presented two possible outputs; it may vary in your case. This is common in thread

programming, because your operating system employs context switching as per the design.

Later, you’ll see that you can employ a special mechanism to control the execution order.

�Demonstration 2
In demonstration 1, the original thread (for the Main() method) finishes before the

spawned threads (for Method1 and Method2). But in real-world applications, you may not

want the parent thread to finish before the child threads (though a program will continue

to run until its foreground threads are alive).

In simple scenarios, you may use the Sleep(int millisecondsTimeout) method.

It is a static method and commonly used. It causes the currently executing thread

to pause for a specified period of time. The int parameter hints that you need to pass

Chapter 5 Thread Programming

175

milliseconds as the argument. If you want the current thread to pause for 1 second,

you pass 1000 as the argument to the Sleep method. But the Sleep method is not as

effective as Join(), which is also defined in the Thread class. This is because the Join()

method can help you block a thread until another thread finishes its execution. In the

following demonstration, I use this method, and you see the following lines of code with

supporting comments.

// Waiting for threadOne to finish

threadOne.Join();

// Waiting for threadtwo to finish

threadTwo.Join();

These statements are written inside the Main() method. Once the original thread

passes through these statements, it waits for threadOne and threadTwo to finish their

jobs and effectively join the execution of the child threads.

Now go through the complete demonstration and look at the output, followed by a

short analysis.

using System;

using System.Threading;

namespace ThreadProgrammingEx2

{

 class Program

 {

 static void Main(string[] args)

 {

 Console.WriteLine("***Thread Demonstration-2****");

 �Console.WriteLine("***Exploring Join() method.It helps to

make a thread wait for another running thread to finish it's

job.***");

 Console.WriteLine("Main thread has started.");

 Thread threadOne = new Thread(Method1);

 // Same as

 //Thread threadOne = new Thread(new ThreadStart(Method1));

 Thread threadTwo = new Thread(Method2);

Chapter 5 Thread Programming

176

 // Same as

 //Thread threadTwo = new Thread(new ThreadStart(Method2));

 Console.WriteLine("Starting threadOne shortly.");

 // threadOne starts

 threadOne.Start();

 Console.WriteLine("Starting threadTwo shortly.");

 // threadTwo starts

 threadTwo.Start();

 // Waiting for threadOne to finish

 threadOne.Join();

 // Waiting for threadtwo to finish

 threadTwo.Join();

 �Console.WriteLine("Control comes at the end of Main()

method.");

 Console.ReadKey();

 }

 static void Method1()

 {

 for (int i = 0; i < 10; i++)

 {

 Console.WriteLine("-ThreadOne from Method1() prints {0}", i);

 }

 }

 static void Method2()

 {

 for (int i = 0; i < 10; i++)

 {

 �Console.WriteLine("--ThreadTwo from Method2() prints

2.0{0}", i);

 }

 }

 }

}

Chapter 5 Thread Programming

177

�Output

This is one possible output.

Thread Demonstration-2*

***Exploring Join() method.It helps to make a thread wait for another

running thread to finish it's job.***
Main thread has started.

Starting threadOne shortly.

Starting threadTwo shortly.

-ThreadOne from Method1() prints 0

-ThreadOne from Method1() prints 1

-ThreadOne from Method1() prints 2

-ThreadOne from Method1() prints 3

-ThreadOne from Method1() prints 4

--ThreadTwo from Method2() prints 2.00

--ThreadTwo from Method2() prints 2.01

--ThreadTwo from Method2() prints 2.02

--ThreadTwo from Method2() prints 2.03

--ThreadTwo from Method2() prints 2.04

--ThreadTwo from Method2() prints 2.05

--ThreadTwo from Method2() prints 2.06

--ThreadTwo from Method2() prints 2.07

--ThreadTwo from Method2() prints 2.08

--ThreadTwo from Method2() prints 2.09

-ThreadOne from Method1() prints 5

-ThreadOne from Method1() prints 6

-ThreadOne from Method1() prints 7

-ThreadOne from Method1() prints 8

-ThreadOne from Method1() prints 9

Control comes at the end of Main() method.

Chapter 5 Thread Programming

178

�Analysis

In this demonstration, you saw the use of the Join() method inside the Main() method.

The original thread remained alive until the other threads finished executing. So, the

"Control comes at the end of Main() method." statement always appears at the end

of output.

It's important to note that

•	 Both the Start and Join methods have different overloaded versions.

•	 You encounter a runtime error that says, System.Threading.

ThreadStateException: ‘Thread has not been started.’ if you call

Join() on a thread that hasn’t started.

�Q&A Session
5.5  How does Thread.Sleep() differ from Thread.Join()?
The Sleep() method has two variations.

public static void Sleep(int millisecondsTimeout)

and

public static void Sleep(TimeSpan timeout)

Using the Sleep() method, you can suspend the current thread for a specific amount

of time.

Join() has three variations.

public void Join();

public bool Join(int millisecondsTimeout);

public bool Join(TimeSpan timeout);

The basic idea is that by using Join(), you can block the calling thread until the thread

represented by this instance terminates. (Although you can specify a timeout limit inside

the overloaded version of Join().)

With sleep(), if your specified time is unnecessarily big, the thread will be in

suspended state, even if other threads have already finished their execution. But by using

Join(), you can wait for other threads to finish, and then proceed immediately.

Chapter 5 Thread Programming

179

Another interesting difference is that Sleep() is a static method, and you call this

method on the current thread. But Join() is an instance method, and when you write

something like the following, from a caller’s point of view, you pass an instance of some

other thread (other than the calling thread) and wait for that thread to finish first.

// Waiting for threadOne to finish

threadOne.Join();

�Using the ParameterizedThreadStart Delegate
You have seen the usage of the ThreadStart delegate. You were not able to deal with

methods that can accept parameters, but methods with parameters are very common

in programming. Next, you see the use of the ParameterizedThreadStart delegate. You

already know that it can accept an object parameter, and it’s return type is void. Since

the parameter is an object, you can use it for any type—as long as you can apply the cast

properly to the correct type.

�Demonstration 3
In this demonstration, you have the following method.

static void Method3(Object number)

{

 int upperLimit = (int)number;

 for (int i = 0; i < upperLimit; i++)

 {

 Console.WriteLine("---ThreadThree from Method3() prints 3.0{0}", i);

 }

}

You can see that although the method has an object parameter, I’m casting it

to an int, and then I use it to print the required data to the console window. In this

demonstration, three methods are present: Method1, Method2, and Method3.

Method1 and Method2 were in previous demonstrations. Method3 is newly added to

demonstrate the usage of both ThreadStart delegate and ParameterizedThreadStart

delegate together in the following example.

Chapter 5 Thread Programming

180

using System;

using System.Threading;

namespace UsingParameterizedThreadStart_delegate

{

 class Program

 {

 static void Main(string[] args)

 {

 �Console.WriteLine("***ParameterizedThreadStart delegate is used

in this demonstration****");

 Console.WriteLine("Main thread has started.");

 Thread threadOne = new Thread(Method1);

 // Same as

 //Thread threadOne = new Thread(new ThreadStart(Method1));

 Thread threadTwo = new Thread(Method2);

 // Same as

 //Thread threadTwo = new Thread(new ThreadStart(Method2));

 Thread threadThree = new Thread(Method3);

 // Same as

 �//Thread threadThree = new Thread(new ParameterizedThreadStart

(Method3));

 Console.WriteLine("Starting threadOne shortly.");

 // threadOne starts

 threadOne.Start();

 Console.WriteLine("Starting threadTwo shortly.");

 // threadTwo starts

 threadTwo.Start();

 �Console.WriteLine("Starting threadThree shortly.Here we use

ParameterizedThreadStart delegate.");

 // threadThree starts

 threadThree.Start(15);

 // Waiting for threadOne to finish

Chapter 5 Thread Programming

181

 threadOne.Join();

 // Waiting for threadtwo to finish

 threadTwo.Join();

 // Waiting for threadthree to finish

 threadThree.Join();

 Console.WriteLine("Main() method ends now.");

 Console.ReadKey();

 }

 static void Method1()

 {

 for (int i = 0; i < 10; i++)

 {

 Console.WriteLine("-ThreadOne from Method1() prints {0}", i);

 }

 }

 static void Method2()

 {

 for (int i = 0; i < 10; i++)

 {

 �Console.WriteLine("--ThreadTwo from Method2() prints

2.0{0}", i);

 }

 }

/*
The following method has an object parameter

This method matches the ParameterizedThreadStart delegate signature;because

it has a single parameter of type Object and this method doesn't return a

value.

*/

 static void Method3(Object number)

 {

 int upperLimit = (int)number;

 for (int i = 0; i < upperLimit; i++)

 {

Chapter 5 Thread Programming

182

 �Console.WriteLine("---ThreadThree from Method3() prints

3.0{0}", i);

 }

 }

 }

}

�Output

This is one possible output.

ParameterizedThreadStart delegate is used in this demonstration*
Main thread has started.

Starting threadOne shortly.

Starting threadTwo shortly.

-ThreadOne from Method1() prints 0

-ThreadOne from Method1() prints 1

-ThreadOne from Method1() prints 2

-ThreadOne from Method1() prints 3

-ThreadOne from Method1() prints 4

Starting threadThree shortly.Here we use ParameterizedThreadStart delegate.

--ThreadTwo from Method2() prints 2.00

-ThreadOne from Method1() prints 5

--ThreadTwo from Method2() prints 2.01

-ThreadOne from Method1() prints 6

--ThreadTwo from Method2() prints 2.02

-ThreadOne from Method1() prints 7

--ThreadTwo from Method2() prints 2.03

-ThreadOne from Method1() prints 8

---ThreadThree from Method3() prints 3.00

--ThreadTwo from Method2() prints 2.04

-ThreadOne from Method1() prints 9

---ThreadThree from Method3() prints 3.01

--ThreadTwo from Method2() prints 2.05

---ThreadThree from Method3() prints 3.02

--ThreadTwo from Method2() prints 2.06

Chapter 5 Thread Programming

183

---ThreadThree from Method3() prints 3.03

---ThreadThree from Method3() prints 3.04

---ThreadThree from Method3() prints 3.05

---ThreadThree from Method3() prints 3.06

--ThreadTwo from Method2() prints 2.07

--ThreadTwo from Method2() prints 2.08

---ThreadThree from Method3() prints 3.07

--ThreadTwo from Method2() prints 2.09

---ThreadThree from Method3() prints 3.08

---ThreadThree from Method3() prints 3.09

---ThreadThree from Method3() prints 3.010

---ThreadThree from Method3() prints 3.011

---ThreadThree from Method3() prints 3.012

---ThreadThree from Method3() prints 3.013

---ThreadThree from Method3() prints 3.014

Main() method ends now.

�Analysis

As in demonstration 2, the Join() method was used in this example. As a result, the

line "Main() method ends now." is at the end of the output. Also notice that this time I

have used the following line: threadThree.Start(15); Here I have used the overloaded

version of Start() method which can take an object parameter.

�Q&A Session
5.6  I understand that by using the ParameterizedThreadStart delegate, I can use

the methods that can accept an object parameter. But how can I use other methods
that accept parameters other than object?

Since the parameter is an object, you can use it for nearly anything, and you may

need to apply casting properly. For example, in demonstration 3, I passed an int to

Method3’s argument, which is implicitly converted to an object, and later I applied

casting to the object parameter to get back the required int.

5.7  Using the ParameterizedThreadStart delegate, can I deal with a method that
accepts multiple parameters?

Yes, you can. Demonstration 4 shows you such a usage.

Chapter 5 Thread Programming

184

�Demonstration 4
In this example, you see the following class, called Boundaries, which has a public

constructor with two int parameters.

class Boundaries

{

 public int lowerLimit;

 public int upperLimit;

 public Boundaries(int lower, int upper)

 {

 lowerLimit = lower;

 upperLimit = upper;

 }

}

And there is a static method called Method4 that matches the signature of the

ParameterizedThreadStart delegate. This method is defined as follows.

static void Method4(Object limits)

{

 Boundaries boundaries = (Boundaries)limits;

 int lowerLimit = boundaries.lowerLimit;

 int upperLimit = boundaries.upperLimit;

 for (int i = lowerLimit; i < upperLimit; i++)

 {

 Console.WriteLine("---ThreadFour from Method4() prints 4.0{0}", i);

 }

}

Inside Main are the following lines of code.

Thread threadFour = new Thread(Method4);

threadFour.Start(new Boundaries(0, 10));

You can see that I’m creating a Boundaries class object and passing 0 and 10 as

arguments. In a similar way, you can pass as many arguments as you want to construct an

object, and then pass it to a method that matches the ParameterizedThreadStart delegate.

Chapter 5 Thread Programming

185

using System;

using System.Threading;

namespace ThreadProgrammingEx4

{

 class Boundaries

 {

 public int lowerLimit;

 public int upperLimit;

 public Boundaries(int lower, int upper)

 {

 lowerLimit = lower;

 upperLimit = upper;

 }

 }

 class Program

 {

 static void Main(string[] args)

 {

 Console.WriteLine("***Thread Demonstration-4****");

 Console.WriteLine("Main thread has started.");

 Thread threadOne = new Thread(Method1);

 // Same as

 //Thread threadOne = new Thread(new ThreadStart(Method1));

 Thread threadTwo = new Thread(Method2);

 // Same as

 //Thread threadTwo = new Thread(new ThreadStart(Method2));

 Thread threadThree = new Thread(Method3);

 // Same as

 �//Thread threadThree = new Thread(new ParameterizedThreadStart

(Method3));

 Thread threadFour = new Thread(Method4);

 // Same as

Chapter 5 Thread Programming

186

 �//Thread threadThree = new Thread(new ParameterizedThreadStart

(Method4));

 Console.WriteLine("Starting threadOne shortly.");

 // threadOne starts

 threadOne.Start();

 Console.WriteLine("Starting threadTwo shortly.");

 // threadTwo starts

 threadTwo.Start();

 �Console.WriteLine("Starting threadThree shortly.Here we use

ParameterizedThreadStart delegate.");

 // threadThree starts

 threadThree.Start(15);

 �Console.WriteLine("Starting threadFour shortly.Here we use

ParameterizedThreadStart delegate.");

 // threadFour starts

 threadFour.Start(new Boundaries(0,10));

 // Waiting for threadOne to finish

 threadOne.Join();

 // Waiting for threadtwo to finish

 threadTwo.Join();

 // Waiting for threadthree to finish

 threadThree.Join();

 Console.WriteLine("Main() method ends now.");

 Console.ReadKey();

 }

 static void Method1()

 {

 for (int i = 0; i < 10; i++)

 {

 Console.WriteLine("-ThreadOne from Method1() prints {0}", i);

 }

 }

Chapter 5 Thread Programming

187

 static void Method2()

 {

 for (int i = 0; i < 10; i++)

 {

 �Console.WriteLine("--ThreadTwo from Method2() prints

2.0{0}", i);

 }

 }

/*
The following method has an object parameter

This method matches the ParameterizedThreadStart delegate signature;because

it has a single parameter of type Object and this method doesn't return a

value.

*/

 static void Method3(Object number)

 {

 int upperLimit = (int)number;

 for (int i = 0; i < upperLimit; i++)

 {

 �Console.WriteLine("---ThreadThree from Method3() prints

3.0{0}", i);

 }

 }

/*
The following method also has one parameter.This method matches the

ParameterizedThreadStart delegate signature; because it has a single

parameter of type Object and this method doesn't return a value.

*/

 static void Method4(Object limits)

 {

 Boundaries boundaries = (Boundaries)limits;

 int lowerLimit = boundaries.lowerLimit;

 int upperLimit = boundaries.upperLimit;

 for (int i = lowerLimit; i < upperLimit; i++)

Chapter 5 Thread Programming

188

 {

 Console.WriteLine("---ThreadFour from Method4() prints

4.0{0}", i);

 }

 }

 }

}

�Output

This is one possible output.

Thread Demonstration-4*
Main thread has started.

Starting threadOne shortly.

Starting threadTwo shortly.

-ThreadOne from Method1() prints 0

-ThreadOne from Method1() prints 1

Starting threadThree shortly.Here we use ParameterizedThreadStart delegate.

-ThreadOne from Method1() prints 2

-ThreadOne from Method1() prints 3

-ThreadOne from Method1() prints 4

-ThreadOne from Method1() prints 5

-ThreadOne from Method1() prints 6

-ThreadOne from Method1() prints 7

-ThreadOne from Method1() prints 8

-ThreadOne from Method1() prints 9

---ThreadThree from Method3() prints 3.00

---ThreadThree from Method3() prints 3.01

---ThreadThree from Method3() prints 3.02

---ThreadThree from Method3() prints 3.03

---ThreadThree from Method3() prints 3.04

---ThreadThree from Method3() prints 3.05

---ThreadThree from Method3() prints 3.06

--ThreadTwo from Method2() prints 2.00

--ThreadTwo from Method2() prints 2.01

Chapter 5 Thread Programming

189

--ThreadTwo from Method2() prints 2.02

--ThreadTwo from Method2() prints 2.03

--ThreadTwo from Method2() prints 2.04

--ThreadTwo from Method2() prints 2.05

--ThreadTwo from Method2() prints 2.06

--ThreadTwo from Method2() prints 2.07

--ThreadTwo from Method2() prints 2.08

--ThreadTwo from Method2() prints 2.09

---ThreadThree from Method3() prints 3.07

Starting threadFour shortly.Here we use ParameterizedThreadStart delegate.

---ThreadThree from Method3() prints 3.08

---ThreadThree from Method3() prints 3.09

---ThreadThree from Method3() prints 3.010

---ThreadThree from Method3() prints 3.011

---ThreadThree from Method3() prints 3.012

---ThreadThree from Method3() prints 3.013

---ThreadThree from Method3() prints 3.014

---ThreadFour from Method4() prints 4.00

---ThreadFour from Method4() prints 4.01

---ThreadFour from Method4() prints 4.02

---ThreadFour from Method4() prints 4.03

---ThreadFour from Method4() prints 4.04

---ThreadFour from Method4() prints 4.05

---ThreadFour from Method4() prints 4.06

---ThreadFour from Method4() prints 4.07

---ThreadFour from Method4() prints 4.08

Main() method ends now.

---ThreadFour from Method4() prints 4.09

�Analysis

I have not used Join() for threadFour, so it is possible that the main thread finishes

before threadFour finishes its job.

Chapter 5 Thread Programming

190

�Q&A Session
5.8  The ParameterizedThreadStart delegate does not deal with methods that

have non-void return types. But if I need to get the return information, how should I
proceed?

You can deal with it in different ways. For example, in Chapter 6, you learn different

techniques to implement asynchronous programming. In that chapter, you see a task-based

asynchronous pattern demonstration in which there is a method that returns a string result.

If you want to deal with a method that returns a different datatype, say an int, you can use a

similar approach.

For now, you can use a lambda expression to get your intended result.

Demonstration 5 shows such an example. (For variation, I used string interpolation to

print console messages in this example.)

�Demonstration 5
This demonstration is an example in which you can use lambda expressions to execute

two different methods (with return type) that run in separate threads.

using System;

using System.Threading;

namespace ThreadProgrammingEx5

{

 class Program

 {

 static void Main(string[] args)

 {

 �Console.WriteLine("***Dealing methods with return types.These

methods run in different threads.***");

 int myInt = 0;//Initial value

 �Console.WriteLine($"Inside Main(),ManagedThreadId:{Thread.

CurrentThread.ManagedThreadId}");

 Thread threadOne = new Thread(

 () => {

Chapter 5 Thread Programming

191

 �Console.WriteLine($"Method1() is executing

in ManagedThreadId:{Thread.CurrentThread.

ManagedThreadId}");

 // Do some activity/task

 myInt = 5;//An arbitrary value

 });

 string myStr = "Failure"; // Initial value

 Thread threadTwo = new Thread(

 () => {

 �Console.WriteLine($"Method2() is executing

in ManagedThreadId:{Thread.CurrentThread.

ManagedThreadId}");

 // Do some activity/task

 myStr = "Success.";

 });

 Console.WriteLine("Starting threadOne shortly.");

 // threadOne starts

 threadOne.Start();

 Console.WriteLine("Starting threadTwo shortly.");

 // threadTwo starts

 threadTwo.Start();

 // Waiting for threadOne to finish

 threadOne.Join();

 // Waiting for threadtwo to finish

 threadTwo.Join();

 Console.WriteLine($"Method1() returns {myInt}");

 Console.WriteLine($"Method2() returns {myStr} ");

 �Console.WriteLine("Control comes at the end of Main()

method.");

 Console.ReadKey();

 }

 }

}

Chapter 5 Thread Programming

192

�Output

This is one possible output.

***Dealing methods with return types.These methods run in different

threads.***
Inside Main(),ManagedThreadId:1

Starting threadOne shortly.

Starting threadTwo shortly.

Method1() is executing in ManagedThreadId:3

Method2() is executing in ManagedThreadId:4

Method1() returns 5

Method2() returns Success.

Control comes at the end of Main() method.

Note M anagedThreadId gets a unique identifier only for a particular managed
thread. You may notice a different value when you run the application in your
machine. Do not feel that since you have created n number of threads, you should
see the thread IDs between 1 and n only. It’s possible that there are other threads
that are also running in the background.

�Q&A Session
5.9  In this chapter, you are using the term main thread. What do you mean by it?
When you execute your program, one thread starts automatically. This is the main

thread. The Main() method in these demonstrations are creating the main thread, which

dies at the end of the Main() method. When I create other threads using the Thread

class, I’m referring to them as the child threads. In this context, it is important to note

that the Thread.CurrentThread property can help you get information about the thread;

for example, you can use the following lines of code to get the name (which you can set

earlier), ID, and priority of a thread.

Console.WriteLine("Inside Main,Thread Name is:{0}", Thread.CurrentThread.

Name);

Console.WriteLine("Inside Main,ManagedThreadId is:{0}", Thread.

CurrentThread.ManagedThreadId);

Chapter 5 Thread Programming

193

Console.WriteLine("Inside Main,Thread Priority is: {0}", Thread.

CurrentThread.Priority);

At the time of writing, a thread in C# can have the following priorities: Lowest,

BelowNormal, Normal, AboveNormal, and Highest. Figure 5-3 displays a partial

screenshot from Visual Studio that shows information about the ThreadPriority

enumeration.

�Demonstration 6
This demonstration shows usage of the Name, Priority, and ManagedThreadId
properties from the Thread class that we just discussed.

using System;
using System.Threading;

namespace UsingMainThread
{
 class Program
 {
 static void Main(string[] args)
 {
 �Console.WriteLine("***Working on the main thread and a child

Thread only.****");

Figure 5-3.  Different thread priorities in C#

Chapter 5 Thread Programming

194

 Thread.CurrentThread.Name = "Main Thread";

 Thread threadOne = new Thread(Method1);
 threadOne.Name = "Child Thread-1";
 threadOne.Priority = ThreadPriority.AboveNormal;
 Console.WriteLine("Starting threadOne shortly.");
 // threadOne starts
 threadOne.Start();
 �Console.WriteLine("Inside Main,Thread Name is:{0}", Thread.

CurrentThread.Name);
 �Console.WriteLine("Inside Main,ManagedThreadId is:{0}", Thread.

CurrentThread.ManagedThreadId);
 �Console.WriteLine("Inside Main,Thread Priority is: {0}",

Thread.CurrentThread.Priority);
 �Console.WriteLine("Control comes at the end of Main()

method.");
 Console.ReadKey();
 }
 static void Method1()
 {
 �Console.WriteLine("Inside Method1(),Thread Name is:{0}",

Thread.CurrentThread.Name);
 �Console.WriteLine("Inside Method1(),ManagedThreadId is:{0}",

Thread.CurrentThread.ManagedThreadId);
 �Console.WriteLine("Inside Method1(),Thread Priority is:{0}",

Thread.CurrentThread.Priority);
 for (int i = 0; i < 5; i++)
 {
 �Console.WriteLine("Using Method1(), printing the value

{0}", i);
 }
 }
 }

}

Chapter 5 Thread Programming

195

�Output

This is a possible output.

Working on the main thread and a child Thread only.*
Starting threadOne shortly.

Inside Main,Thread Name is:Main Thread

Inside Main,ManagedThreadId is:1

Inside Method1(),Thread Name is:Child Thread-1

Inside Method1(),ManagedThreadId is:5

Inside Method1(),Thread Priority is:AboveNormal

Using Method1(), printing the value 0

Using Method1(), printing the value 1

Using Method1(), printing the value 2

Using Method1(), printing the value 3

Using Method1(), printing the value 4

Inside Main,Thread Priority is: Normal

Control comes at the end of Main() method.

�Analysis

Although the child thread priority is higher than the main thread, it does not guarantee

that the child thread will finish before the main thread. There are several other factors

that may determine this output.

�Q&A Session
5.10  “It does not guarantee that the child thread will finish before the main

thread. There are several other factors that may determine this output”. Can you
please elaborate?

Conceptually, priority determines how frequently a thread can get CPU time. In

theory, the higher-priority threads get more CPU time than lower-priority threads, and

in preemptive scheduling, they can preempt the lower-priority threads. But, you need to

consider many other factors. For example, it may happen that a high-priority thread is

waiting to get a shared resource and is therefore blocked; and in such a situation, a low-

priority thread can get a chance to complete its task.

Chapter 5 Thread Programming

196

Consider another case in which a low-priority thread is doing a very short task and

a high-priority thread is doing a very long-running task. If the low-priority thread gets a

chance to execute, it finishes before the high-priority thread.

Lastly, the way that task scheduling is implemented in an operating system also

matters because CPU allocation depends on this too. This is why you shouldn’t totally

depend on priorities to predict an output.

5.11  How can I terminate a thread?
By using the Abort() method defined in the Thread class, you can terminate a

thread.

Here is some sample code.

threadOne.Abort();

The Abort() method has two different overloaded versions, as follows.

public void Abort();

public void Abort(object stateInfo);

�Foreground Thread vs. Background Thread
The Thread class has a property called IsBackground, which is described as follows.

//

// Summary:

// Gets or sets a value indicating whether or not a thread is a

// background thread.

//

// Returns:

// true if this thread is or is to become a background thread;

// otherwise, false.

//

// Exceptions:

// T:System.Threading.ThreadStateException:

// The thread is dead.

public bool IsBackground { get; set; }

Chapter 5 Thread Programming

197

By default, a thread is a foreground thread. You can convert a foreground thread to

a background thread when you set the IsBackground property to true. The following

segment of code can help you understand this better. (I made two Thread class objects:

threadFour and threadFive. Later, I’ll make a threadFive a background thread. I

marked the expected output for this segment with comments).

Thread threadFour = new Thread(Method1);

Console.WriteLine("Is threadFour is a background thread?:{0} ",

threadFour.IsBackground); // False

Thread threadFive = new Thread(Method1);

threadFive.IsBackground = true;

Console.WriteLine("Is threadFive is a background thread?:{0} ",

threadFive.IsBackground); // True

If you want a complete demonstration, consider the following example.

�Demonstration 7
In Main(), I created only one thread. I named it Child Thread-1 and set the

IsBackground property to true. Now run this program and follow the output and

corresponding discussions.

using System;

using System.Threading;

namespace TestingBackgroundThreads

{

 class Program

 {

 static void Main(string[] args)

 {

 �Console.WriteLine("***Comparing a foreground threads with a

background thread****");

 Thread.CurrentThread.Name = "Main Thread";

 Console.WriteLine($"{Thread.CurrentThread.Name} has started.");

 Thread childThread = new Thread(MyMethod);

 childThread.Name = "Child Thread-1";

Chapter 5 Thread Programming

198

 Console.WriteLine("Starting Child Thread-1 shortly.");

 // threadOne starts

 childThread.Start();

 childThread.IsBackground = true;

 �Console.WriteLine("Control comes at the end of Main()

method.");

 //Console.ReadKey();

 }

 static void MyMethod()

 {

 �Console.WriteLine($"{Thread.CurrentThread.Name} enters into

MyMethod()");

 for (int i = 0; i < 10; i++)

 {

 �Console.WriteLine($"{Thread.CurrentThread.Name} from

MyMethod() prints {i}");

 //Taking a small sleep

 Thread.Sleep(100);

 }

 �Console.WriteLine($"{Thread.CurrentThread.Name} exits from

MyMethod()");

 }

 }

}

�Output

This is a possible output.

Comparing a forground threads with a background thread*
Main Thread has started.

Starting Child Thread-1 shortly.

Control comes at the end of Main() method.

Child Thread-1 enters into MyMethod()

Child Thread-1 from MyMethod() prints 0

Chapter 5 Thread Programming

199

But if you comment out the following line in the preceding example as follows,

//childThread.IsBackground = true;

you may get the following output.

Comparing a forground threads with a background thread*
Main Thread has started.

Starting Child Thread-1 shortly.

Control comes at the end of Main() method.

Child Thread-1 enters into MyMethod()

Child Thread-1 from MyMethod() prints 0

Child Thread-1 from MyMethod() prints 1

Child Thread-1 from MyMethod() prints 2

Child Thread-1 from MyMethod() prints 3

Child Thread-1 from MyMethod() prints 4

Child Thread-1 from MyMethod() prints 5

Child Thread-1 from MyMethod() prints 6

Child Thread-1 from MyMethod() prints 7

Child Thread-1 from MyMethod() prints 8

Child Thread-1 from MyMethod() prints 9

Child Thread-1 exits from MyMethod()

This tells you that the child thread (a.k.a. worker thread) was able to complete its

task; when you do not make it a background thread, it can continue its task after the

main thread finishes its execution.

�Additional Note

I also commented the following line when I set IsBackground property to true.

//Console.ReadKey();

This is because I didn’t want to wait for user input. I wanted the child thread to

terminate immediately once the main thread dies.

Chapter 5 Thread Programming

200

Note  In many contexts (particularly in UI applications), you see the term worker
thread. It describes another thread that is different from the current thread.
Technically, it is a thread that runs in the background, although no one claims that
this is the true definition. Microsoft writes, “A worker thread is commonly used
to handle background tasks that the user should not have to wait for to continue
using your application. Tasks such as recalculation and background printing
are good examples of worker threads.” (See https://docs.microsoft.
com/en-us/cpp/parallel/multithreading-creating-worker-
threads?view=vs-2019).  In the context of C#, Microsoft says, “By default,
a .NET program is started with a single thread, often called the primary thread.
However, it can create additional threads to execute code in parallel or concurrently
with the primary thread. These threads are often called worker threads.” (See
https://docs.microsoft.com/en-us/dotnet/standard/threading/
threads-and-threading).

�Thread Safety
Sometimes multiple threads need to access shared resources. Controlling these

situations is tricky; for example, consider when one thread is trying to read the data

from a file and another thread is still writing or updating in the same file. If you cannot

manage the correct order, you may get surprising results. The concept of synchronization

is useful in these situations.

�A Non-Synchronized Version
To understand the need for a synchronized method, let’s start with a program where

the concept is not implemented. In the following demonstration, a class called

SharedResource contains a public method called SharedMethod(). Let’s assume that

inside this method, there are resources that can be shared among multiple threads. For

simplicity, I put some simple statements to indicate the entry and exit of a thread. To see

the effect precisely, I put a simple Sleep statement inside the method body. It increases

the probability to switch the execution to another thread.

Chapter 5 Thread Programming

https://docs.microsoft.com/en-us/cpp/parallel/multithreading-creating-worker-threads?view=vs-2019
https://docs.microsoft.com/en-us/cpp/parallel/multithreading-creating-worker-threads?view=vs-2019
https://docs.microsoft.com/en-us/cpp/parallel/multithreading-creating-worker-threads?view=vs-2019
https://docs.microsoft.com/en-us/dotnet/standard/threading/threads-and-threading
https://docs.microsoft.com/en-us/dotnet/standard/threading/threads-and-threading

201

I created two child threads inside the Main method: Child Thread-1 and Child

Thread-2. Note the following lines of code in the demonstration.

SharedResource sharedObject = new SharedResource();

Thread threadOne = new Thread(sharedObject.SharedMethod);

threadOne.Name = "Child Thread-1";

Thread threadTwo = new Thread(sharedObject.SharedMethod);

threadTwo.Name = "Child Thread-2";

Once you run this non-synchronized version of the program, you may notice the

following lines in your possible output.

Child Thread-1 has entered in the shared location.
Child Thread-2 has entered in the shared location.
Child Thread-1 exits.
Child Thread-2 exits.
From this output segment you can see that Child Thread-1 has entered the shared

location first. But before it finishes its execution, Child Thread-2 has also entered the

shared location.

When you deal with shared resources (or shared location), you need to be extremely

careful, and so if any thread is working there, you may want to restrict any other thread

from entering that location.

�Demonstration 8
This complete example describes the situation.

using System;

using System.Threading;

namespace ExploringTheNeedofSynchronizationInDotNetCore

{

 class Program

 {

 static void Main(string[] args)

 {

 Console.WriteLine("***Exploring Thread Synchronization.****");

Chapter 5 Thread Programming

202

 �Console.WriteLine("***We are beginning with a non-synchronized

version.****");

 Thread.CurrentThread.Name = "Main Thread";

 Console.WriteLine("Main thread has started already.");

 SharedResource sharedObject = new SharedResource();
 Thread threadOne = new Thread(sharedObject.SharedMethod);
 threadOne.Name = "Child Thread-1";

 Thread threadTwo = new Thread(sharedObject.SharedMethod);
 threadTwo.Name = "Child Thread-2";
 // Child Thread-1 starts.
 threadOne.Start();
 // Child Thread-2 starts.
 threadTwo.Start();
 // Waiting for Child Thread-1 to finish.
 threadOne.Join();
 // Waiting for Child Thread-2 to finish.
 threadTwo.Join();
 Console.WriteLine("The {0} exits now.", Thread.CurrentThread.Name);
 Console.ReadKey();
 }
 }
 class SharedResource
 {
 public void SharedMethod()
 {
 �Console.Write(Thread.CurrentThread.Name + " has entered in the

shared location. \n");
 Thread.Sleep(3000);
 Console.Write(Thread.CurrentThread.Name + " exits.\n");
 }
 }
}

�Output

This is a complete possible output.

Chapter 5 Thread Programming

203

Exploring Thread Synchronization.*

We are beginning with a non-synchronized version.*
Main thread has started already.

Child Thread-1 has entered in the shared location.

Child Thread-2 has entered in the shared location.

Child Thread-1 exits.

Child Thread-2 exits.

The Main Thread exits now.

Note T his output may vary in each time you run it in your system.To get the
same output, you may need to execute the application multiple times.

�A Synchronized Version
I believe that you understand the need for a synchronized version now. So, let’s

implement the concept of synchronization and update the previous demonstration.

�Demonstration 9
In this demonstration, you see the use of a lock. This locking mechanism typically

prevents accidental modification of shared resources due to simultaneous access to

multiple threads in a shared location; when you successfully implement this, you can say

that your application is thread safe.

First, let me explain some common terms. These terms are frequently used in a

similar context. The segment of code that you want to guard against simultaneous access

from multiple threads is called a critical section. At any given moment, you allow only

one thread to work in the critical section. This principle is known as mutual exclusion.

The mechanism to enforce this principle is often called a mutex.

When a thread obtains a lock, it can enter the critical section. Once its job is done, it

exits from this location and releases the lock. Now, another thread can obtain the lock

and proceed. But if a thread wants to enter the critical section and sees that the lock

is currently held by another thread, it cannot enter. The thread needs to suspend the

activity until the lock is released.

Chapter 5 Thread Programming

204

How do you create a lock? It is very simple, and often done with a private instance

variable in the same object/class, as follows.

private object myLock = new object(); // You can use any object.

As the comment says, you can make the lock as you wish. For example, if you deal
with a static method, you could even write something like the following.

private static StringBuilder strLock = new StringBuilder();

To implement thread safety in the previous demonstration, you can modify the
SharedResource class as follows. (Note the newly introduced lines in bold.) I also made
some changes inside the Main method to indicate that it is a synchronized version. So,
I’m replacing the following line in from previous demonstration

Console.WriteLine("***We are beginning with a non-synchronized
version.****");

with the following lines in the upcoming demonstration.

Console.WriteLine("***Here we have a synchronized version.We are using the
concept of lock.****");

class SharedResource
{
 private object myLock = new object();
 public void SharedMethod()
 {
 lock (myLock)
 {
 �Console.Write(Thread.CurrentThread.Name + " has entered in the

shared location. \n");
 Thread.Sleep(3000);
 Console.Write(Thread.CurrentThread.Name + " exits.\n");
 }

Chapter 5 Thread Programming

205

 }
}

�Output

This time, you get this output.

Exploring Thread Synchronization.*

***Here we have a synchronized version.We are using the concept of

lock.****
Main thread has started already.

Child Thread-1 has entered in the shared location.

Child Thread-1 exits.

Child Thread-2 has entered in the shared location.

Child Thread-2 exits.

The Main Thread exits now.

You need to remember that when you use the lock statement as follows, myLock is an

expression of a reference type.

lock(myLock){ // Some code},

For example, in this example, myLock is an Object instance, which is nothing but

a reference type. But, instead of using a reference type, if you use a value type in this

context as follows,

private int myLock = new int();//not correct

you’ll get the following error.

Error CS0185 'int' is not a reference type as required by the lock statement

�An Alternative Approach Using the Monitor Class
In the Monitor class, the members implement synchronization. Since you’ve seen the

use of locks, it’s worth noting that it internally wraps Monitor’s Entry and Exit methods.

So, you can replace the following code segment

lock (myLock)

{

Chapter 5 Thread Programming

206

 �Console.Write(Thread.CurrentThread.Name + " has entered in the shared

location. \n");

 Thread.Sleep(3000);

 Console.Write(Thread.CurrentThread.Name + " exits.\n");

}

with an equivalent code segment using Monitor’s Entry and Exit methods, like the

following.

// lock internally wraps Monitor's Entry and Exit method in a try...

// finally block.

try

{

 Monitor.Enter(myLock);

 �Console.Write(Thread.CurrentThread.Name + " has entered in the shared

location. \n");

 Thread.Sleep(3000);

 Console.Write(Thread.CurrentThread.Name + " exits.\n");

}

finally

{

 Monitor.Exit(myLock);

 }

In addition to these methods, the Monitor class has additional methods that can

send notifications. For example, in this class, you can see the Wait, Pulse, and PulseAll

methods with different overloaded versions. The following are simple descriptions of

these methods.

•	 Wait(): Using this method, a thread can wait for other threads to

notify.

•	 Pulse(): Using this method, a thread can send notifications to

another thread.

•	 PulseAll(): Using this method, a thread can notify all other threads

within a process.

Chapter 5 Thread Programming

207

Apart from these methods, there is another interesting method with overloaded

versions called TryEnter.

This is the simplest form of this method with a description from Visual Studio.

//

// Summary:

// Attempts to acquire an exclusive lock on the specified object.

//

// Parameters:

// obj:

// The object on which to acquire the lock.

//

// Returns:

// true if the current thread acquires the lock; otherwise, false.

//

// Exceptions:

// T:System.ArgumentNullException:

// The obj parameter is null.

public static bool TryEnter(object obj);

The TryEnter method returns the boolean value true if the calling thread can obtain

a lock on the desired object; otherwise, it will return false. Using a different overloaded

version of this method, you can specify a time limit, in which you attempt to get an

exclusive lock on the desired object.

�Deadlock
Deadlock is a situation or condition where at least two processes or threads are waiting

for each other to complete or release control, so that each one can finish its job. This may

result in none of them being able to start (and they go to a hang state.) You may often

hear about these real-life examples.

You can't get a job without experience; you can't get experience without a job.

Or,

After a fight between two close friends, each of them expects the other to initiate the

friendship again.

Chapter 5 Thread Programming

208

POINTS TO REMEMBER

Without synchronization, you may see surprising output (for example, some corrupted data),

but with improper use of synchronization, you can encounter a deadlock.

�Types of Deadlock
Theoretically, there are different types of deadlock.

•	 Resource deadlock. Suppose two processes (P1 and P2) hold two

resources (R1 and R2, respectively). P1 asks for resource R2 and P2

asks for resource R1 to complete their jobs. The OS generally deals

with this type of deadlock.

•	 Synchronization deadlock. Suppose process P1 is waiting to

perform an action (a1) only after P2 completes a specific action (a2),

and P2 is waiting to complete action a2 only after P1 completes a1.

•	 Communication deadlock. Similar to the prior scenarios, you can

replace the concept of actions/resources by messages (i.e., two

processes waiting to receive a message from each other to proceed

further).

In this chapter, we are focusing on the multithreaded environment, so let’s discuss

deadlock that is caused by multiple threads in C# applications only.

�Demonstration 10
The following program can cause a deadlock. There are two locks used in this program.

These locks are called myFirstLock and mySecondLock, respectively. For demonstration

purposes, the wrong design is shown in this example; you see Child Thread-1 try to obtain

myFirstLock, and then mySecondLock and Child Thread-2 try to get the locks in the

reverse order. So, when both threads lock their first lock at the same time, they encounter

with a deadlocked situation.

Chapter 5 Thread Programming

209

Again, the following is an incorrect implementation used only for demonstration

purposes.

using System;

using System.Threading;

namespace DeadlockDemoInDotNetCore

{

 class Program

 {

 static void Main(string[] args)

 {

 �Console.WriteLine("***Exploring Deadlock with an incorrect

design of application.****");

 Thread.CurrentThread.Name = "Main Thread";

 Console.WriteLine("Main thread has started already.");

 SharedResource sharedObject = new SharedResource();

 Thread threadOne = new Thread(sharedObject.SharedMethodOne);

 threadOne.Name = "Child Thread-1";

 Thread threadTwo = new Thread(sharedObject.SharedMethodTwo);

 threadTwo.Name = "Child Thread-2";

 // Child Thread-1 starts.

 threadOne.Start();

 // Child Thread-2 starts.

 threadTwo.Start();

 // Waiting for Child Thread-1 to finish.

 threadOne.Join();

 // Waiting for Child Thread-2 to finish.

 threadTwo.Join();

 Console.WriteLine("The {0} exits now.", Thread.CurrentThread.Name);

 Console.ReadKey();

 }

 }

Chapter 5 Thread Programming

210

 class SharedResource

 {

 private object myFirstLock = new object();

 private object mySecondLock = new object();

 public void SharedMethodOne()

 {

 lock (myFirstLock)

 {

 �Console.Write(Thread.CurrentThread.Name + " has entered

into first part of SharedMethodOne. \n");

 Thread.Sleep(1000);

 �Console.Write(Thread.CurrentThread.Name + " exits

SharedMethodOne--first part.\n");

 lock (mySecondLock)
 {
 �Console.Write(Thread.CurrentThread.Name + " has entered

into last part of SharedMethodOne. \n");
 Thread.Sleep(1000);

 �Console.Write(Thread.CurrentThread.Name + " exits
SharedMethodOne--last part.\n");

 }
 }
 }
 public void SharedMethodTwo()
 {
 lock (mySecondLock)
 {
 �Console.Write(Thread.CurrentThread.Name + " has entered

into first part of SharedMethodTwo. \n");
 Thread.Sleep(1000);

 �Console.Write(Thread.CurrentThread.Name + " exits
SharedMethodTwo--first part.\n");

 lock (myFirstLock)
 {

Chapter 5 Thread Programming

211

 �Console.Write(Thread.CurrentThread.Name + " has entered
into last part of SharedMethodTwo. \n");

 Thread.Sleep(1000);
 �Console.Write(Thread.CurrentThread.Name + " exits

SharedMethodTwo--last part.\n");
 }
 }
 }
 }

}

�Output

When your program hangs, you see only the following lines in your output.

Exploring Deadlock with an incorrect design of application.*
Main thread has started already.

Child Thread-1 has entered into first part of SharedMethodOne.

Child Thread-2 has entered into first part of SharedMethodTwo.

Child Thread-1 exits SharedMethodOne--first part.

Child Thread-2 exits SharedMethodTwo--first part.

Note  You may not encounter deadlock in your first run, but keep executing the
program; there will eventually be a case in which you see deadlock.

�Investigating the Deadlocked State in Visual Studio
In this hang state, go to Debug ➤ Break All. Then go to Debug ➤ Window ➤ Thread.

You see a screen that looks like Figure 5-4. Notice that you can see the status of the Main

thread and the child threads. Let’s open all the windows (see Figures 5-4, 5-5, and 5-6).

Figure 5-4 is the Main thread window.

Chapter 5 Thread Programming

212

Figure 5-5.  Child Thread-1 window in a deadlocked state

Figure 5-4.  Main Thread window in a deadlocked state

Figure 5-5 is the Child Thread-1 window.

Chapter 5 Thread Programming

213

If you split the window into vertical and horizontal sections, you can see them all at

once, as shown in Figure 5-7.

Figure 5-6.  Child Thread-2 window in deadlocked state

Figure 5-6 is the Child Thread-2 window.

Figure 5-7.  Main Thread, Child Thread-1, Child-Thread-2 windows at a glance in
deadlocked state

Chapter 5 Thread Programming

214

Note T o split a window vertically, you can go to Window ➤ New Window to
create a clone of the tab. Note the tabs named Program.cs:1 and Program2.cs:2.
Right-click on any of them, and then choose New Vertical Tab Group. Similarly, to
split the windows horizontally, select New Horizontal Tab Group. In Figure 5-7,
I divided the windows vertically and then I divided one of them horizontally.

You should clearly be able to see that threads are stuck on the lock statements in

child threads. And as a side effect, the Main thread is also stuck on threadOne.Join().

During an execution of a multithreaded program, if Visual Studio shows you a hang

state, you can investigate the cause in a similar way. It is also important to note that

deadlock can occur in many different situations, but the focus of this section is on locks.

That’s the basics of thread programming. Like any advanced topic, in-depth

discussions need many more pages. Still, you should now have a fair idea about the

fundamentals.

�Final Words
Now you probably understand why you started with the following line of code.

using System.Threading;

It is because this namespace has the Thread class, which is the foundation for thread
programming. Thread is a sealed class, which has lots of members, including properties,
methods, constructors, and destructors. So far, you have seen the following.

•	 Use of the following two constructors:

public Thread(ThreadStart start);
public Thread(ParameterizedThreadStart start);

•	 Use of the following properties:

public bool IsBackground { get; set; }
public static Thread CurrentThread { get; }
public string Name { get; set; }
public int ManagedThreadId { get; }

Chapter 5 Thread Programming

215

•	 Use of the following methods:

 public void Start();
 public void Join();
 public void Abort();

There are many other members that are also useful. I recommend that you have a

look at them. If you’re using the Visual Studio IDE, you can simply right-click the Thread

class, and then select Go to Definition (F2) to see their definitions.
It’s also worth noting that some members of Thread class became deprecated, (for

example, Suspend and Resume). Microsoft recommends that you use other methods
for your application instead of those methods. For example, in the Suspend method
definition, you see the following.

[Obsolete("Thread.Suspend has been deprecated. Please use other classes
in System.Threading, such as Monitor, Mutex, Event, and Semaphore, to
synchronize Threads or protect resources. http://go.microsoft.com/
fwlink/?linkid=14202", false)]
[SecuritySafeCritical]

public void Suspend();

This also tells you that Monitor, Mutex, Event, and Semaphore are important classes

when you implement synchronization in your program. A more detailed description of

these classes is beyond the scope of this book.

Lastly, you use multithreading when you want concurrent execution rather than

sequential execution, and you may think that creating threads enhances the performance

of an application. But this may not always be true! You should limit the number of threads

in your application to avoid too much context switching among the threads. The overhead

due to context switching can degrade the overall performance of your application.

These are the basics of thread programming in C#. Multithreading is a complex

topic, and there are several facets in it. An entire book could be dedicated to this

topic. I believe that this chapter should give you a clear idea about the fundamentals,

however. In next chapter, asynchronous programming is discussed, and you learn some

interesting concepts in a similar context.

Chapter 5 Thread Programming

216

�Summary
This chapter addressed the following key questions.

•	 What is a thread, and how is it different from a process?

•	 How do you create threads?

•	 How do you use different Thread class constructors?

•	 Using the ParameterizedThreadStart delegate, how do you use a

method that accepts multiple parameters?

•	 How do you use important Thread class members?

•	 How do you distinguish a foreground thread from a background

thread?

•	 What is synchronization, and why is it needed?

•	 How do you implement thread safety in C# using lock statements?

•	 How can you implement an alternative approach to lock statements

using Monitor’s Entry and Exit methods?

•	 What is a deadlock, and how can you detect deadlock in your system?

Chapter 5 Thread Programming

217
© Vaskaran Sarcar 2020
V. Sarcar, Getting Started with Advanced C#, https://doi.org/10.1007/978-1-4842-5934-4_6

CHAPTER 6

Asynchronous
Programming
Asynchronous programming is tough and challenging but interesting. It is also known

as asynchrony. The overall concept did not evolve in one day; it took time. The async

and await keywords first appeared in C# 5.0 to make it easier. Prior to that, different

programmers implemented the concept using various techniques. Each technique has

its own pros and cons. The goal of this chapter is to introduce you to asynchronous

programming and to go through some common implementation methods.

�Overview
Let’s first discuss what asynchronous programming is. In simple terms, you take a code

segment in your application and run it on a separate thread. What is the key benefit?

The simple answer is that you can free the original thread and let it continue to do its

remaining tasks, and in a separate thread, you perform a different task. This mechanism

helps you develop modern-day applications; for example, when you implement a highly

responsive user interface, these concepts are very useful.

https://doi.org/10.1007/978-1-4842-5934-4_6#ESM

218

POINTS TO REMEMBER

Broadly, you notice three different patterns in asynchronous programming.

•	 IAsyncResult Pattern: This is also known as Asynchronous Programming
Model (APM). In this pattern, you see the IAsyncResult interface to

support the asynchronous behavior. In a synchronous model, if you have

a synchronous method called XXX( ), in the asynchronous version, you see

the use of BeginXXX() and EndXXX() methods for the corresponding

synchronous method. For example, in the synchronous version, if the Read()

method supports read operations, in asynchronous programming, you see

the BeginRead() and EndRead() methods support the corresponding read

operations asynchronously. Using this concept, you see the BeginInvoke

and EndInvoke methods in demonstrations 5, 6, and 7. This pattern is not

recommended for new development, however.

•	 Event-based Asynchronous Pattern: This pattern came with .NET Framework

2.0. It is based on an event mechanism. Here you see the method name with

the Async suffix, one or multiple events, and EventArg derived types. This

pattern is not recommended for new development.

•	 Task-based Asynchronous Pattern: This first appeared in .NET Framework

4. It’s the recommended practice for asynchronous programming nowadays. In

C#, you often see the async and await keywords in this pattern.

To better understand asynchronous programming, let’s start our discussion with its

counterpart: synchronous programming. A synchronous approach is straightforward,

and the code paths are easy to understand; but you need to wait for the result from a

particular segment of code, and until then, you just sit idle. Consider some typical cases;

for example, when you know that a segment of code is trying to open a web page that

may take time to load, or when a segment of code is exercising a long-running algorithm

and so forth. If you follow the synchronous approach, when you perform a long-running

operation, you must sit idle because you cannot do anything useful.

This is why, to support modern-day demands and build highly responsive

applications, the need for asynchronous programming is growing.

Chapter 6 Asynchronous Programming

219

�Using a Synchronous Approach
Demonstration 1 executes a simple program. Let’s start with a synchronous approach.

There are two simple methods: Method1() and Method2(). Inside the Main() method, these

methods are called synchronously (i.e., Method1() is called first and then Method2() is

called.) I used simple sleep statements so that the jobs performed by these methods take a

significant amount of time to complete. Once you run the application and note the output,

you see that only after Method1() finishes its execution, does Method2() start its execution.

The Main() method cannot complete until these methods finish their execution.

Note  Throughout this chapter, you see these methods with slight variations.
I tried to maintain similar methods (or operations) so that you can compare
different techniques of asynchronous programming. For demonstration purposes,
Method1() takes more time to finish because it performs a lengthy operation
(I forced a relatively long sleep inside it). Method2() performs a small task,
so I placed a short sleep inside it. Also, to keep it simple, I used short names.

�Demonstration 1
This is the complete demonstration.

using System;

using System.Threading;

namespace SynchronousProgrammingExample

{

 class Program

 {

 static void Main(string[] args)

 {

 �Console.WriteLine("***Demonstration-1.A Synchronous Program

Demo.***");

 Method1();

 Method2();

 Console.WriteLine("End Main().");

Chapter 6 Asynchronous Programming

220

 Console.ReadKey();
 }
 // Method1
 private static void Method1()
 {
 Console.WriteLine("Method1() has started.");
 // Some big task
 Thread.Sleep(1000);
 Console.WriteLine("Method1() has finished.");
 }
 // Method2
 private static void Method2()
 {
 Console.WriteLine("Method2() has started.");
 // Some small task
 Thread.Sleep(100);
 Console.WriteLine("Method2() has finished.");
 }
 }
 }

�Output
This is the output.

Demonstration-1.A Synchronous Program Demo.
Method1() has started.
Method1() has finished.
Method2() has started.
Method2() has finished.
End Main().

�Using Thread Class
If you look closely at the methods in demonstration 1, you find that they were not
dependent on each other. If you can execute them in parallel, the response time of your
application is improved, and you can reduce the overall execution time. Let’s find some

better approaches.

Chapter 6 Asynchronous Programming

221

You learned about threads in Chapter 5, so you can implement the concepts of

multithreading. Demonstration 2 shows you an obvious solution using threads. I kept

the commented codes for your reference. This demonstration focuses on substituting

Method1() inside a new thread.

�Demonstration 2
using System;

using System.Threading;

namespace UsingThreadClass

{

 class Program

 {

 static void Main(string[] args)

 {

 �Console.WriteLine("***Asynchronous Programming

Demonstration-1.***");

 //Method1();

 �// Old approach.Creating a separate thread for the following

// task(i.e Method1.)

 Thread newThread = new Thread(()=>

 {

 �Console.WriteLine("Method1() has started on a separate

thread.");

 // Some big task

 Thread.Sleep(1000);

 Console.WriteLine("Method1() has finished.");

 }

);

 newThread.Start();

 Thread.Sleep(10);

 Method2();

 Console.WriteLine("End Main().");

 Console.ReadKey();

 }

Chapter 6 Asynchronous Programming

222

 // Method1

 //private static void Method1()

 //{

 // Console.WriteLine("Method1() has started.");

 // // Some big task

 // Thread.Sleep(1000);

 // Console.WriteLine("Method1() has finished.");

 //}

 private static void Method2()

 {

 Console.WriteLine("Method2() has started.");

 // Some small task

 Thread.Sleep(100);

 Console.WriteLine("Method2() has finished.");

 }

 }

}

�Output

This is one possible output.

Asynchronous Programming Demonstration-1.
Method1() has started on a separate thread.

Method2() has started.

Method2() has finished.

End Main().

Method1() has finished.

�Analysis

Note that although Method1() was invoked early, Method2 did not need to wait for

Method1() to finish execution. Also, since Method2() is doing very little (sleep time is 100

milliseconds), it was able to finish before Method1() finished its execution. Also note that

since the main thread was not blocked, it was able to continue its execution.

Chapter 6 Asynchronous Programming

223

�Q&A Session
6.1  Why did you use a sleep statement prior to the execution of Method2() inside

Main?
Good catch. It was not necessary, but in some cases, you may notice that even

though you try to start Method1() to execute on a separate thread before Method2() in

the current thread, that doesn’t happen, and as a result, you may notice the following

output.

Asynchronous Programming Demonstration-1.
Method2() has started.

Method1() has started in a separate thread.

Method2() has finished.

End Main().

Method1() has finished.

This simple sleep statement can help you increase the probability of starting

Method1() prior to Method2() in this example.

�Using the ThreadPool Class
Creating threads directly in a real-world application is normally discouraged.

The following are some of the chief reasons behind this.

•	 Maintaining too many threads incur tough and costly operations.

•	 A large amount of time is wasted on context switching rather than

doing the real work.

To avoid directly creating threads, C# gives you the facility to use the built-in

ThreadPool class. With this class, you can use the existing threads, which can be reused

to serve your purpose. The ThreadPool class is very effective in maintaining the optimal

number of threads in your application. If needed, you can execute some of your task

asynchronously using this facility.

ThreadPool is a static class that contains static methods, and some of them also

have an overloaded version. Figure 6-1 is a partial screenshot from Visual Studio IDE that

shows the methods in the ThreadPool class.

Chapter 6 Asynchronous Programming

224

In this section, our focus is on the QueueUserWorkItem method. In Figure 6-1, note

that this method has two overloaded versions. To learn more about this method, let’s

expand the method description in Visual Studio. For example, once you expand the first

overloaded version of this method, you see the following.

//

// Summary:

// Queues a method for execution. The method executes when a thread

// pool thread becomes available.

//

// Parameters:

// callBack:

// A System.Threading.WaitCallback that represents the method to be

// executed.

//

// Returns:

// true if the method is successfully queued; System.

// NotSupportedException is thrown

// if the work item could not be queued.

Figure 6-1.  A screenshot of the ThreadPool class from Visual Studio 2019 IDE

Chapter 6 Asynchronous Programming

225

//

// Exceptions:

// T:System.ArgumentNullException:

// callBack is null.

//

// T:System.NotSupportedException:

// The common language runtime (CLR) is hosted, and the host does not

// support this action.

[SecuritySafeCritical]

public static bool QueueUserWorkItem(WaitCallback callBack);

If you further investigate on the method parameter, you find that WaitCallBack is a

delegate with the following description.

//

// Summary:

// Represents a callback method to be executed by a thread pool thread.

//

// Parameters:

// state:

// An object containing information to be used by the callback method.

[ComVisible(true)]

public delegate void WaitCallback(object state);

The second overloaded version of QueueUserWorkItem can take an object parameter

called state. It is as follows.

public static bool QueueUserWorkItem(WaitCallback callBack, object state);

If you look at the details, you see that you can pass valuable data to your method

through this parameter. In demonstration 3, I use both overloaded versions, and I

introduce Method3, in which I pass an object parameter.

�Demonstration 3
To use the QueueUserWorkItem method effectively, you need a method that matches the

WaitCallBack delegate signature. In the following demonstration, I queue two methods

in ThreadPool. In demonstration 2, Method2 does not accept any parameter. If you pass

it to QueueUserWorkItem, you get the following compilation error.

Chapter 6 Asynchronous Programming

226

No overload for 'Method2' matches delegate 'WaitCallback'

Let’s modify Method2 with a dummy Object parameter, as follows (I kept the

comments for your reference).

/* The following method's signature should match the delegate

WaitCallback.*/

private static void Method2(Object state)

{

 Console.WriteLine("--Method2() has started.");

 // Some small task

 Thread.Sleep(100);

 Console.WriteLine("--Method2() has finished.");

}

Next, let’s introduce Method3, which uses the Object parameter. Method3 is

described as follows.

static void Method3(Object number)

{

 Console.WriteLine("---Method3() has started.");

 int upperLimit = (int)number;

 for (int i = 0; i < upperLimit; i++)

 {

 Console.WriteLine("---Method3() prints 3.0{0}", i);

 }

 Thread.Sleep(100);

 Console.WriteLine("---Method3() has finished.");

}

Now go through the following demonstration and the corresponding output.

using System;

using System.Threading;

namespace UsingThreadPool

{

 class Program

Chapter 6 Asynchronous Programming

227

 {

 static void Main(string[] args)

 {

 �Console.WriteLine("***Asynchronous Programming Demonstration.***");

 Console.WriteLine("***Using ThreadPool.***");

 // Using Threadpool

 // Not passing any parameter for Method2

 ThreadPool.QueueUserWorkItem(new WaitCallback(Method2));

 // Passing 10 as the parameter for Method3

 ThreadPool.QueueUserWorkItem(new WaitCallback(Method3), 10);

 Method1();

 Console.WriteLine("End Main().");

 Console.ReadKey();

 }

 private static void Method1()

 {

 Console.WriteLine("-Method1() has started.");

 // Some big task

 Thread.Sleep(1000);

 Console.WriteLine("-Method1() has finished.");

 }

 /* �The following method's signature should match the delegate WaitCallback.

 It is as follows:

 public delegate void WaitCallback(object state)

 */

 //private static void Method2()//Compilation error

 private static void Method2(Object state)

 {

 Console.WriteLine("--Method2() has started.");

 // Some small task

 Thread.Sleep(100);

 Console.WriteLine("--Method2() has finished.");

 }

Chapter 6 Asynchronous Programming

228

 /*
The following method has a parameter.This method's signature matches the

WaitCallBack delegate signature.Notice that this method also matches

the ParameterizedThreadStart delegate signature; because it has a single

parameter of type Object and this method doesn't return a value.

 */

 static void Method3(Object number)

 {

 Console.WriteLine("---Method3() has started.");

 int upperLimit = (int)number;

 for (int i = 0; i < upperLimit; i++)

 {

 Console.WriteLine("---Method3() prints 3.0{0}", i);

 }

 Thread.Sleep(100);

 Console.WriteLine("---Method3() has finished.");

 }

 }

}

�Output

This is a possible output.

Asynchronous Programming Demonstration.

Using ThreadPool.
-Method1() has started.

---Method3() has started.

---Method3() prints 3.00

---Method3() prints 3.01

---Method3() prints 3.02

---Method3() prints 3.03

--Method2() has started.

---Method3() prints 3.04

---Method3() prints 3.05

Chapter 6 Asynchronous Programming

229

---Method3() prints 3.06

---Method3() prints 3.07

---Method3() prints 3.08

---Method3() prints 3.09

--Method2() has finished.

---Method3() has finished.

-Method1() has finished.

End Main().

�Q&A Session
6.2  Following the simple delegate instantiation technique, if I use the following line:

ThreadPool.QueueUserWorkItem(Method2);

instead of this line:

ThreadPool.QueueUserWorkItem(new WaitCallback(Method2));

will the application compile and run?

Yes, but since you are learning to use the WaitCallback delegate now, I

kept it for your reference.

�Using Lambda Expressions with ThreadPool
If you like lambda expressions, you can use it in a similar context. For example, in

demonstration 3, you can replace Method3 using a lambda expression, as follows.

// Using lambda Expression

// Here the method needs a parameter(input).

// Passing 10 as the parameter for Method3

ThreadPool.QueueUserWorkItem((number) =>

{

 Console.WriteLine("---Method3() has started.");

 int upperLimit = (int)number;

 for (int i = 0; i < upperLimit; i++)

 {

 Console.WriteLine("---Method3() prints 3.0{0}", i);

Chapter 6 Asynchronous Programming

230

 }

 Thread.Sleep(100);

 Console.WriteLine("---Method3() has finished.");

 }, 10

);

In demonstration 3, you can comment out the following line and replace Method3

with the lambda expression shown earlier.

ThreadPool.QueueUserWorkItem(new WaitCallback(Method3), 10);

If you execute the program again, you get a similar output. Demonstration 4 is the

full implementation for your reference.

�Demonstration 4
using System;

using System.Threading;

namespace UsingThreadPoolWithLambdaExpression

{

 class Program

 {

 static void Main(string[] args)

 {

 �Console.WriteLine("***Asynchronous Programming

Demonstration.***");

 �Console.WriteLine("***Using ThreadPool with Lambda

Expression.***");

 // Using Threadpool

 // Not passing any parameter for Method2

 ThreadPool.QueueUserWorkItem(Method2);

 // Using lambda Expression

 // Here the method needs a parameter(input).

 // Passing 10 as the parameter for Method3

Chapter 6 Asynchronous Programming

231

 ThreadPool.QueueUserWorkItem((number) =>

 {

 Console.WriteLine("--Method3() has started.");

 int upperLimit = (int)number;

 for (int i = 0; i < upperLimit; i++)

 {

 Console.WriteLine("---Method3() prints 3.0{0}", i);

 }

 Thread.Sleep(100);

 Console.WriteLine("--Method3() has finished.");

 }, 10

);

 Method1();

 Console.WriteLine("End Main().");

 Console.ReadKey();

 }

 private static void Method1()

 {

 Console.WriteLine("-Method1() has started.");

 // Some task

 Thread.Sleep(500);

 Console.WriteLine("-Method1() has finished.");

 }

 �/* The following method's signature should match the delegate

WaitCallback.

 It is as follows:

 public delegate void WaitCallback(object state)

 */

 //private static void Method2()//Compilation error

 private static void Method2(Object state)

 {

 Console.WriteLine("--Method2() has started.");

Chapter 6 Asynchronous Programming

232

 // Some task

 Thread.Sleep(100);

 Console.WriteLine("--Method2() has finished.");

 }

 }

}

�Output

This is a possible output.

Asynchronous Programming Demonstration.

Using ThreadPool with Lambda Expression.
-Method1() has started.

--Method3() has started.

---Method3() prints 3.00

--Method2() has started.

---Method3() prints 3.01

---Method3() prints 3.02

---Method3() prints 3.03

---Method3() prints 3.04

---Method3() prints 3.05

---Method3() prints 3.06

---Method3() prints 3.07

---Method3() prints 3.08

---Method3() prints 3.09

--Method2() has finished.

--Method3() has finished.

-Method1() has finished.

End Main().

Note  This time, you saw the use of lambda expressions in the ThreadPool
class. In demonstration 2, you saw the use of lambda expressions with the Thread
class.

Chapter 6 Asynchronous Programming

233

�Using the IAsyncResult Pattern
The IAsyncResult interface helps you implement asynchronous behavior. Let’s recollect

what I told you earlier. In a synchronous model, if there is a synchronous method

called XXX, in the asynchronous version, the BeginXXX and EndXXX methods are the

corresponding synchronous methods. Let’s take a closer look.

�Polling Using Asynchronous Delegates
So far, you have seen many different uses of delegates. In this section, you get to

know another usage, which teaches that by using delegates, you can invoke methods

asynchronously. Polling is a mechanism that repeatedly checks a condition. In

demonstration 5, let’s check whether a delegate instance completes its task or not.

�Demonstration 5
There are two methods called Method1 and Method2. Let’s again assume that Method1

takes more time to complete its task than Method2. To make it simple, Sleep()

statements pass inside these methods. In this example, Method1 receives an argument

that sleeps for 3000 milliseconds, and Method2 sleeps for 100 milliseconds.

Now look at the important segment of the codes. First, a delegate instance is created

to match the Method1 signature. Method1 is as follows.

// Method1

private static void Method1(int sleepTimeInMilliSec)

{

 Console.WriteLine("Method1() has started.");

 �Console.WriteLine("Inside Method1(),Thread id {0} .",

Thread.CurrentThread.ManagedThreadId);

 // Some big task

 Thread.Sleep(sleepTimeInMilliSec);

 Console.WriteLine("\nMethod1() has finished.");

}

To match the signature, declare Method1Delegate as follows.

  public delegate void Method1Delegate(int sleepTimeinMilliSec);

Chapter 6 Asynchronous Programming

234

Later, instantiate it as follows.

Method1Delegate method1Del = Method1;

Everything is straightforward so far. Now we come to the most important line of the

code, which is as follows.

IAsyncResult asyncResult = method1Del.BeginInvoke(3000, null, null);

Do you remember that in the context of the delegate, you can use the Invoke()

method? But the last time, the code was following a synchronous path. Now that we

are exploring asynchronous programming, you see the use of the BeginInvoke and

EndInvoke methods. When the C# compiler sees the delegate keyword, it supplies these

methods for your dynamically generated class.

The BeginInvoke method’s return type is IAsyncResult. If you hover your mouse

on BeginInvoke or note its structure, you see that although Method1 accepts only one

parameter, the BeginInvoke method always takes two additional parameters—one of

type AsyncCallback and one of type object. I discuss them shortly.

In this example, I use the first argument only and pass 3000 milliseconds as

Method1’s argument. But for the last two parameters of BeginInvoke, I pass null.

The result of BeginInvoke is important. I hold the result in an IAsyncResult object.

The IAsyncResult has the following read-only properties.

public interface IAsyncResult

{

 bool IsCompleted { get; }

 WaitHandle AsyncWaitHandle { get; }

 object AsyncState { get; }

 bool CompletedSynchronously { get; }

 }

For now, my focus is on the isCompleted property. If you expand these definitions

further, you see that isCompleted is defined as follows.

//

// Summary:

// Gets a value that indicates whether the asynchronous operation has

// completed.

Chapter 6 Asynchronous Programming

235

//

// Returns:

// true if the operation is complete; otherwise, false.

bool IsCompleted { get; }

It’s clear that you can use this property to verify whether the delegate has completed

its work.

In the following example, I check whether the delegate in the other thread has

completed its work. If the work is not completed, I print asterisks (*) in the console window

and force the main thread to take a short sleep. This is why you see the following segment

of code in this demonstration.

while (!asyncResult.IsCompleted)

{

 // Keep working in main thread

 Console.Write("*");

 Thread.Sleep(5);

}

Lastly, the EndInvoke method accepts an argument of type IAsyncResult. I passed

asyncResult as an argument in this method.

Now go through the complete demonstration.

using System;

using System.Threading;

namespace PollingDemo

{

 class Program

 {

 public delegate void Method1Delegate(int sleepTimeinMilliSec);

 static void Main(string[] args)

 {

 Console.WriteLine("***Polling Demo.***");

 �Console.WriteLine("Inside Main(),Thread id {0} .",

Thread.CurrentThread.ManagedThreadId);

 // Synchronous call

 //Method1(3000);

Chapter 6 Asynchronous Programming

236

 Method1Delegate method1Del = Method1;

 IAsyncResult asyncResult = method1Del.BeginInvoke(3000, null, null);

 Method2();

 while (!asyncResult.IsCompleted)

 {

 // Keep working in main thread

 Console.Write("*");

 Thread.Sleep(5);

 }

 method1Del.EndInvoke(asyncResult);

 Console.ReadKey();

 }

 // Method1

 private static void Method1(int sleepTimeInMilliSec)

 {

 Console.WriteLine("Method1() has started.");

 �Console.WriteLine("Inside Method1(),Thread id {0} .",

Thread.CurrentThread.ManagedThreadId);

 // Some big task

 Thread.Sleep(sleepTimeInMilliSec);

 Console.WriteLine("\nMethod1() has finished.");

 }

 // Method2

 private static void Method2()

 {

 Console.WriteLine("Method2() has started.");

 �Console.WriteLine("Inside Method2(),Thread id {0} .",

Thread.CurrentThread.ManagedThreadId);

 // Some small task

 Thread.Sleep(100);

 Console.WriteLine("Method2() has finished.");

 }

 }

}

Chapter 6 Asynchronous Programming

237

�Output

This is one possible output.

Polling Demo.
Inside Main(),Thread id 1 .

Method2() has started.

Inside Method2(),Thread id 1 .

Method1() has started.

Inside Method1(),Thread id 3 .

Method2() has finished.

**

Method1() has finished.

�Q&A Session
6.3  In a previous case, Method1 took one parameter and BeginInvoke took three

parameters. If Method1 accepts n number of parameters, then BeginInvoke will have

n+2 parameters.
Yes, the initial set of parameters is based on your methods, but for the last two

parameters, one is of type AsyncCallback and the final one is of type object.

POINTS TO REMEMBER

•	 This type of example was run in .NET Framework 4.7.2. If you execute

the program in .NET Core 3.0, you get an exception saying, “System.

PlatformNotSupportedException: Operation is not supported on this platform.”

One of the primary reasons for this is that async delegate implementation

depends on remoting features that are not present in .NET Core. A discussion

on this is at https://github.com/dotnet/runtime/issues/16312.

Chapter 6 Asynchronous Programming

https://github.com/dotnet/runtime/issues/16312

238

•	 If you do not want to examine and print asterisks (*) in the console window,

you can simply call the EndInvoke() method of the delegate type once your

main thread completes its execution. The EndInvoke() method waits until the

delegate completes its work.

•	 If you don’t explicitly examine whether the delegate finishes its execution or

not, or you simply forget to call EndInvoke(), the thread of the delegate

is stopped after the main thread dies. For example, if you comment out the

following segment of code from the prior example,

//while (!asyncResult.IsCompleted)

//{

// Keep working in main thread

// Console.Write("*");

// Thread.Sleep(5);

//}

//method1Del.EndInvoke(asyncResult);

//Console.ReadKey();

and run the application again, you may not see the "Method1() has

finished." Statement.

•	 BeginInvoke helps the calling thread get the result of asynchronous method

invocation at a later time by using EndInvoke.

�Using the AsyncWaitHandle Property of IAsyncResult
Now I’ll show you an alternative approach using another property, AsyncWaitHandle,

which is also available in IAsyncResult. If you see the contents of IAsyncResult, you

find that AsyncWaitHandle returns WaitHandle, which has the following description.

//

// Summary:

// Gets a System.Threading.WaitHandle that is used to wait for an

// asynchronous operation to complete.

//

// Returns:

// A System.Threading.WaitHandle that is used to wait for an

// asynchronous operation to complete.

WaitHandle AsyncWaitHandle { get; }

Chapter 6 Asynchronous Programming

239

The Visual Studio IDE confirms that WaitHandle is an abstract class that waits for

exclusive access to shared resources. Inside WaitHandle, you see the WaitOne() method

with five different overloaded versions.

public virtual bool WaitOne(int millisecondsTimeout);

public virtual bool WaitOne(int millisecondsTimeout, bool exitContext);

public virtual bool WaitOne(TimeSpan timeout);

public virtual bool WaitOne(TimeSpan timeout, bool exitContext);

public virtual bool WaitOne();

By using WaitHandle, you can wait for a delegate thread to finish its work. In

demonstration 6, the first overloaded version is used, and an optional timeout value in

milliseconds is provided. If the wait is successful, the control exits from the while loop;

but if timeout occurs, WaitOne() returns false, and the while loop continues and prints

asterisks (*) in the console.

�Demonstration 6
using System;

using System.Threading;

namespace UsingWaitHandle

{

 class Program

 {

 public delegate void Method1Delegate(int sleepTimeinMilliSec);

 static void Main(string[] args)

 {

 Console.WriteLine("***Polling and WaitHandle Demo.***");

 �Console.WriteLine("Inside Main(),Thread id {0} .",

Thread.CurrentThread.ManagedThreadId);

 // Synchronous call

 //Method1(3000);

 // Asynchrous call using a delegate

 Method1Delegate method1Del = Method1;

Chapter 6 Asynchronous Programming

240

 IAsyncResult asyncResult = method1Del.BeginInvoke(3000, null, null);

 Method2();

 // while (!asyncResult.IsCompleted)

 while (true)

 {

 // Keep working in main thread

 Console.Write("*");

 /* �There are 5 different overload method for WaitOne().

Following method blocks the current thread until the

current System.Threading.WaitHandle receives a signal,

using a 32-bit signed integer to specify the time

interval in milliseconds.

 */

 if (asyncResult.AsyncWaitHandle.WaitOne(10))

 {

 Console.Write("\nResult is available now.");

 break;

 }

 }

 method1Del.EndInvoke(asyncResult);

 Console.WriteLine("\nExiting Main().");

 Console.ReadKey();

 }

 // Method1

 private static void Method1(int sleepTimeInMilliSec)

 {

 Console.WriteLine("Method1() has started.");

 // It will have a different thread id

 �Console.WriteLine("Inside Method1(),Thread id {0} .",

Thread.CurrentThread.ManagedThreadId);

 // Some big task

 Thread.Sleep(sleepTimeInMilliSec);

 Console.WriteLine("\nMethod1() has finished.");

Chapter 6 Asynchronous Programming

241

 }

 // Method2

 private static void Method2()

 {

 Console.WriteLine("Method2() has started.");

 // Main thread id and this thread id will be same

 �Console.WriteLine("Inside Method2(),Thread id {0} .",

Thread.CurrentThread.ManagedThreadId);

 // Some small task

 Thread.Sleep(100);

 Console.WriteLine("Method2() has finished.");

 }

 }

}

�Output

This is one possible output.

Polling and WaitHandle Demo.
Inside Main(),Thread id 1 .

Method2() has started.

Inside Method2(),Thread id 1 .

Method1() has started.

Inside Method1(),Thread id 3 .

Method2() has finished.

**

Method1() has finished.

*
Result is available now.

Exiting Main().

Chapter 6 Asynchronous Programming

242

�Analysis

If you compare this demonstration with the previous one, you notice that here you

wait for the asynchronous operation to complete in a different manner. Instead of

using IsCompleted property, this time you used the AsyncWaitHandle property of

IAsyncResult.

�Using Asynchronous Callback
Let’s revisit the BeginInvoke method from the previous two demonstrations.

// Asynchrous call using a delegate

Method1Delegate method1Del = Method1;

IAsyncResult asyncResult = method1Del.BeginInvoke(3000, null, null);

This means two null values were passed for the last two method arguments. If

you hover your mouse over the line of these prior demonstrations, you notice that

BeginInvoke is expecting an IAsyncCallback delegate as the second parameter and an

object for the third parameter in this case.

Let’s investigate the IAsyncCallback delegate. Visual Studio IDE says that this

delegate is defined in the System namespace; it has the following description.

//

// Summary:

// References a method to be called when a corresponding asynchronous

// operation completes.

//

// Parameters:

// ar:

// The result of the asynchronous operation.

 [ComVisible(true)]

 public delegate void AsyncCallback(IAsyncResult ar);

You can use a callback method to execute something useful (for example,

housekeeping works). The AsyncCallback delegate has a void return type, and it

accepts an IAsyncResult parameter. Let’s define a method that can match this delegate

signature and call this method once the Method1Del instance finishes its execution.

Here is a sample method, which is used in an upcoming demonstration.

Chapter 6 Asynchronous Programming

243

// Method3: It's a callback method.

// This method will be invoked when Method1Delegate completes its work.

private static void Method3(IAsyncResult asyncResult)

{

 if (asyncResult != null) // if null you can throw some exception

 {

 Console.WriteLine("\nMethod3() has started.");

 �Console.WriteLine("Inside Method3(),Thread id {0} .",

Thread.CurrentThread.ManagedThreadId);

 // Do some housekeeping work/ clean-up operation

 Thread.Sleep(100);

 Console.WriteLine("Method3() has finished.");

 }

}

�Demonstration 7
Now go through the complete implementation.

using System;

using System.Threading;

namespace UsingAsynchronousCallback

{

 class Program

 {

 public delegate void Method1Delegate(int sleepTimeinMilliSec);

 static void Main(string[] args)

 {

 Console.WriteLine("***Using Asynchronous Callback.***");

 �Console.WriteLine("Inside Main(),Thread id {0} .",

Thread.CurrentThread.ManagedThreadId);

 // Synchronous call

 //Method1(3000);

 // Asynchrous call using a delegate

 Method1Delegate method1Del = Method1;

Chapter 6 Asynchronous Programming

244

 �IAsyncResult asyncResult = method1Del.BeginInvoke(3000,

Method3, null);

 Method2();

 while (!asyncResult.IsCompleted)

 {

 // Keep working in main thread

 Console.Write("*");

 Thread.Sleep(5);

 }

 method1Del.EndInvoke(asyncResult);

 Console.WriteLine("Exit Main().");

 Console.ReadKey();

 }

 // Method1

 private static void Method1(int sleepTimeInMilliSec)

 {

 Console.WriteLine("Method1() has started.");

 �Console.WriteLine("Inside Method1(),Thread id {0} .",

Thread.CurrentThread.ManagedThreadId);

 // Some big task

 Thread.Sleep(sleepTimeInMilliSec);

 Console.WriteLine("\nMethod1() has finished.");

 }

 // Method2

 private static void Method2()

 {

 Console.WriteLine("Method2() has started.");

 �Console.WriteLine("Inside Method2(),Thread id {0} .",

Thread.CurrentThread.ManagedThreadId);

 //Some small task

 Thread.Sleep(100);

 Console.WriteLine("Method2() has finished.");

 }

Chapter 6 Asynchronous Programming

245

 /* �Method3: It's a callback method.This method will be invoked when

Method1Delegate completes its work.*/

 private static void Method3(IAsyncResult asyncResult)

 {

 if (asyncResult != null)//if null you can throw some exception

 {

 Console.WriteLine("\nMethod3() has started.");

 �Console.WriteLine("Inside Method3(),Thread id {0} .",

Thread.CurrentThread.ManagedThreadId);

 // Do some housekeeping work/ clean-up operation

 Thread.Sleep(100);

 Console.WriteLine("Method3() has finished.");

 }

 }

 }

}

�Output

This is a possible output.

Using Asynchronous Callback.
Inside Main(),Thread id 1 .

Method2() has started.

Inside Method2(),Thread id 1 .

Method1() has started.

Inside Method1(),Thread id 3 .

Method2() has finished.

**

**
Method1() has finished.

Method3() has started.

Chapter 6 Asynchronous Programming

246

Inside Method3(),Thread id 3 .

Exit Main().

Method3() has finished.

�Analysis

Note that Method3 started its work only after Method1() finished its execution. Also note

that the thread ID of Method1() and Method3() are the same. This is because Method3()

was invoked from the thread in which Method1() was running.

�Q&A Session
6.4  What is a callback method?
Normally, it is a method that is invoked only after a specific operation is completed.

You often see the usage of this kind of method in asynchronous programming, where

you do not know the exact finishing time of an operation but want to start some specific

task once the prior task is over. For example, in the previous example, Method3 can

perform some clean-up work if Method1() allocates resources during its execution.

6.5  I see that Method3() was not invoked from the main thread. Is this expected?
Yes. Here you are using a callback method. In this example, Method3() is the callback

method, which can start its execution only after Method1() completes its work. So,

it makes sense that you call Method3() from the same thread in which Method1() is

running.

6.6  Can I use a lambda expression in this example?
Good catch. To get a similar output, in the previous demonstration, instead of

creating a new method, Method3(), and using the following line,

IAsyncResult asyncResult = method1Del.BeginInvoke(3000, Method3, null);

you could replace it using a lambda expression as follows.

IAsyncResult asyncResult = method1Del.BeginInvoke(3000,

 (result) =>

{

 if (result != null)//if null you can throw some exception

 {

 Console.WriteLine("\nMethod3() has started.");

Chapter 6 Asynchronous Programming

247

 �Console.WriteLine("Inside Method3(),Thread id {0} .",

Thread.CurrentThread.ManagedThreadId);

 // Do some housekeeping work/ clean-up operation

 Thread.Sleep(100);

 Console.WriteLine("Method3() has finished.");

 }

 },

null);

6.7  When you used the callback method, Method3, inside the BeginInvoke

method, instead of passing an object as the final parameter, you pass a null value. Is
there any specific reason for this?

No, I did not use that parameter in these demonstrations. Since it is an object

parameter, you can literally pass anything meaningful to you. When you use a callback

method, you can pass the delegate instance. It can help your callback method analyze

the result of the asynchronous method.

But for simplicity, let’s modify the previous demonstration and pass a string message

as the last argument inside BeginInvoke. Let’s assume that you are modifying the

existing line of code,

IAsyncResult asyncResult = method1Del.BeginInvoke(3000,Method3, null);

with the following one.

IAsyncResult asyncResult = method1Del.BeginInvoke(3000, Method3,

"Method1Delegate, thank you for using me.");

To accommodate this change, let’s modify the Method3() method too.The newly added

lines are shown in bold.

private static void Method3(IAsyncResult asyncResult)

{

 if (asyncResult != null) // if null you can throw some exception

 {

 Console.WriteLine("\nMethod3() has started.");

 �Console.WriteLine("Inside Method3(),Thread id {0} .",

Thread.CurrentThread.ManagedThreadId);

 // Do some housekeeping work/ clean-up operation

Chapter 6 Asynchronous Programming

248

 Thread.Sleep(100);
 // For Q&A

 string msg = (string)asyncResult.AsyncState;

 Console.WriteLine("Method3() says : '{0}'",msg);
 Console.WriteLine("Method3() has finished.");
 }
}

If you run the program again, this time you may see the following output.

Using Asynchronous Callback.
Inside Main(),Thread id 1 .
Method2() has started.
Inside Method2(),Thread id 1 .
Method1() has started.
Inside Method1(),Thread id 3 .
Method2() has finished.

**

Method1() has finished.

Method3() has started.
Inside Method3(),Thread id 3 .
Exit Main().

Method3() says : 'Method1Delegate, thank you for using me.'

Method3() has finished.

POINTS TO REMEMBER

You have seen the implementation of polling, wait handles, and asynchronous callbacks

using delegates. This programming model is also in other places in the .NET Framework; for

example, BeginGetResponse, BeginGetRequestStream of the HttpWebRequest class,

or BeginExecuteNonQuery(), BeginExecuteReader(), BeginExecuteXmlReader()

of the SqlCommand class. These methods have overloads too.

Chapter 6 Asynchronous Programming

249

�Using an Event-based Asynchronous Pattern (EAP)
In this section, you see the usage of EAP. Event-based patterns often seem tough to

understand at first. Based on the complexity of your application, this pattern can take

various forms.

Here are some key characteristics of this pattern.

•	 In general, an asynchronous method is an exact replica of its

synchronous version, but when you call it, it starts on a separate

thread and then returns immediately. This mechanism allows

calling a thread to continue while the intended operations run in the

background. Examples of these operations can be a long-running

process, such as loading a large image, downloading a large file,

connecting and establishing a connection to a database, and so forth.

EAP is helpful in these contexts. For example, once the long-running

download operation is completed, an event can be raised to notify

the information. The subscribers of the event can act based on this

notification immediately.

•	 You can execute multiple operations simultaneously and receive a

notification when each of them completes.

•	 Using this pattern, you take advantage of multithreading, but at the

same time, you hide the overall complexity.

•	 In simplest case, your method name will have an Async suffix to tell

others that you are using an asynchronous version of the method. At

the same time, you have a corresponding event with a Completed

suffix. In an ideal case, you should have a corresponding cancel

method, and it should support displaying the progress bar/report.

The method that supports a cancel operation can also be named

MethodNameAsyncCancel (or simply CancelAsync).

•	 Components like SoundPlayer, PictureBox, WebClient, and

BackgroundWorker are commonly known representatives of this

pattern.

Demonstration 8 is a simple application for WebClient. Let’s start.

Chapter 6 Asynchronous Programming

250

�Demonstration 8
At the beginning of the program, you see that I needed to include some specific

namespaces. I used the comments to say why these were necessary for this

demonstration.

In this case study, I want to download a file into my local system. But instead of using

an actual URL from the Internet, I’m storing the source file in my local system. This can

give you two major benefits.

•	 You do not need an Internet connection to run this application.

•	 Since you’re not using an Internet connection, the download

operation will be relatively faster.

Now look at the following block of code, which you will see in the complete example.

WebClient webClient = new WebClient();

// File location

Uri myLocation = new Uri(@"C:\TestData\testfile_original.txt");

// Target location for download

string targetLocation = @"C:\TestData\downloaded_file.txt";

webClient.DownloadFileAsync(myLocation, targetLocation);

webClient.DownloadFileCompleted += new AsyncCompletedEventHandler(Completed);

So far, things are straightforward and simple. But I’m drawing your attention to the

following lines of code.

webClient.DownloadFileAsync(myLocation, targetLocation);

webClient.DownloadFileCompleted += new

AsyncCompletedEventHandler(Completed);

You can see that in the first line, I use a method defined in WebClient called

DownloadFileAsync. In Visual Studio, the method description tells us the following.

// Summary:

// Downloads, to a local file, the resource with the specified URI.

// This method does not block the calling thread.

//

Chapter 6 Asynchronous Programming

251

// Parameters:

// address:

// The URI of the resource to download.

//

// fileName:

// The name of the file to be placed on the local computer.

//

// Exceptions:

// T:System.ArgumentNullException:

// The address parameter is null. -or- The fileName parameter is null.

//

// T:System.Net.WebException:

// The URI formed by combining System.Net.WebClient.BaseAddress and

// address is invalid.

// -or- An error occurred while downloading the resource.

//

// T:System.InvalidOperationException:

// The local file specified by fileName is in use by another thread.

public void DownloadFileAsync(Uri address, string fileName);

From the method summary, you understand that when you use this method, the

calling thread is not blocked. (Actually, DownloadFileAsync is the asynchronous version

of the DownloadFile method, which is also defined in WebClient.)

Now come to next line of code.

webClient.DownloadFileCompleted += new AsyncCompletedEventHandler(Completed);

Visual Studio describes the DownloadFileCompleted event as follows.

/ Summary:

// Occurs when an asynchronous file download operation completes.

public event AsyncCompletedEventHandler DownloadFileCompleted;

It describes AsyncCompletedEventHandler as follows.

// Summary:

// Represents the method that will handle the MethodNameCompleted event

// of an asynchronous operation.

Chapter 6 Asynchronous Programming

252

//

// Parameters:

// sender:

// The source of the event.

//

// e:

// An System.ComponentModel.AsyncCompletedEventArgs that contains the

// event data.

public delegate void AsyncCompletedEventHandler(object sender,

AsyncCompletedEventArgs e);

You can subscribe to the DownloadFileCompleted event to show a notification that

the download operation is finished. To do that, the following method is used.

private static void DownloadCompleted(object sender,

AsyncCompletedEventArgs e)

{

 Console.WriteLine("Successfully downloaded the file now.");

}

Note  The DownloadCompleted method matches the signature of the
AsyncCompletedEventHandler delegate.

Since you’ve mastered the concept of delegates and events, you know that you could

replace this line of code

webClient.DownloadFileCompleted += new AsyncCompletedEventHandler(Download

Completed);

with the following line of code.

webClient.DownloadFileCompleted += DownloadCompleted;

I kept the long version for a better readability.

Now go through the complete example and output.

Chapter 6 Asynchronous Programming

253

using System;

// For AsyncCompletedEventHandler delegate

using System.ComponentModel;

using System.Net; // For WebClient

using System.Threading; // For Thread.Sleep() method

namespace UsingWebClient

{

 class Program

 {

 static void Main(string[] args)

 {

 �Console.WriteLine("***Demonstration-.Event Based Asynchronous

Program Demo.***");

 // Method1();

 #region The lenghty operation(download)

 Console.WriteLine("Starting a download operation.");

 WebClient webClient = new WebClient();

 // File location

 Uri myLocation = new Uri(@"C:\TestData\OriginalFile.txt");

 // Target location for download

 string targetLocation = @"C:\TestData\DownloadedFile.txt";

 webClient.DownloadFileAsync(myLocation, targetLocation);

 �webClient.DownloadFileCompleted += new AsyncCompletedEvent

Handler(Completed);

 #endregion

 Method2();

 Console.WriteLine("End Main()...");

 Console.ReadKey();

 }

 // Method2

 private static void Method2()

 {

 Console.WriteLine("Method2() has started.");

 // Some small task

 // Thread.Sleep(10);

Chapter 6 Asynchronous Programming

254

 Console.WriteLine("Method2() has finished.");

 }

 �private static void Completed(object sender,

AsyncCompletedEventArgs e)

 {

 Console.WriteLine("Successfully downloaded the file now.");

 }

 }

}

�Output
This is a possible output.

Demonstration-.Event Based Asynchronous Program Demo.
Starting a download operation.

Method2() has started.

Method2() has finished.

End Main()...

Successfully downloaded the file now.

�Analysis
You can see that the download operation started prior to Method2() starting its

execution. Still, Method2() completed its job before the download operation completed.

If you are interested in seeing the content of Original.txt, it is as follows.

Dear Reader,

This is my test file.It is originally stored at C:\TestData in my system.

You can test a similar file and its contents for a quick verification on your end.

�Additional Note
You can make this example even better when you introduce a progress bar. You can use

a Windows Form App to get built-in support for a progress bar. Let’s ignore Method2, and

focus on the asynchronous download operation. You can make a basic form, as shown

in Figure 6-2, that contains three simple buttons and one progress bar. (You need to drag

and drop these controls on your form first. I assume that you know these activities).

Chapter 6 Asynchronous Programming

255

The following segment of code is self-explanatory.

using System;

using System.ComponentModel;

using System.Net;

using System.Threading;

using System.Windows.Forms;

namespace UsingWebClientWithWinForm

{

 public partial class Form1 : Form

 {

 public Form1()

 {

 InitializeComponent();

 }

 private void StartDownload_Click(object sender, EventArgs e)

Figure 6-2.  A simple UI application to demonstrate event-based asynchrony

Chapter 6 Asynchronous Programming

256

 {

 WebClient webClient = new WebClient();

 Uri myLocation = new Uri(@"C:\TestData\testfile_original.txt");

 string targetLocation = @"C:\TestData\downloaded_file.txt";

 webClient.DownloadFileAsync(myLocation, targetLocation);

 �webClient.DownloadFileCompleted += new AsyncCompletedEvent

Handler(DownloadCompleted);

 �webClient.DownloadProgressChanged += new DownloadProgressChanged

EventHandler(ProgressChanged);

 Thread.Sleep(3000);

 MessageBox.Show("Method1() has finished.");

 }

 private void DownloadCompleted(object sender, AsyncCompletedEventArgs e)

 {

 MessageBox.Show("Successfully downloaded the file now.");

 }

 �private void ProgressChanged(object sender,

DownloadProgressChangedEventArgs e)

 {

 progressBar.Value = e.ProgressPercentage;

 }

 private void ResetButton_Click(object sender, EventArgs e)

 {

 progressBar.Value = 0;

 }

 private void ExitButton_Click(object sender, EventArgs e)

 {

 this.Close();

 }

 }

}

Chapter 6 Asynchronous Programming

257

�Q&A Session
6.8  What are the pros and cons associated with an event-based asynchronous

program?
Here are some common pros and cons associated with this approach.

Pros

•	 You can invoke a long-running method and get a return immediately.

When the method completes, you get a notification.

Figure 6-3.  A runtime screenshot when the UI application is running

�Output

Once you click the StartDownload button, you get the output shown in Figure 6-3.

Chapter 6 Asynchronous Programming

258

Cons

•	 Since you have segregated the code, it’s often difficult to understand,

debug, and maintain.

•	 A major problem can occur when you subscribe an event but later

forget to unsubscribe from it. This mistake can lead to memory leaks

in your application, and the impact can be severe; for example, your

system can hang or be unresponsive, and you may need to reboot

your system often.

�Understanding Tasks
To understand a Task-based Asynchronous Pattern, the first thing to know is that a task

is simply a unit of work that you want to perform. You can complete this work in the

same thread or in a different thread. By using tasks, you have a better control of threads;

for example, you can perform continuation work once a task is finished. A parent task

can create child task(s), so you can organize the hierarchy. This kind of hierarchy is

important when you cascade your messages; for example, in your application, you may

decide that once a parent task is cancelled, the child task(s) should be cancelled too.

You can create tasks in different ways. In the following demonstration, I create three tasks

in three different ways. Note the following segment of code with supporting comments.

#region Different ways to create and execute task

// Using constructor

Task taskOne = new Task(MyMethod);

taskOne.Start();

// Using task factory

TaskFactory taskFactory = new TaskFactory();

// StartNew Method creates and starts a task.

// It has different overloaded version.

Task taskTwo = taskFactory.StartNew(MyMethod);

// Using task factory via a task

Task taskThree = Task.Factory.StartNew(MyMethod);

#endregion

You can see that all three tasks are doing the same operation. Each of them is

executing the MyMethod(), which is described as follows.

Chapter 6 Asynchronous Programming

259

private static void MyMethod()

{

 �Console.WriteLine("Task.id={0} with Thread id {1} has started.",

Task.CurrentId, Thread.CurrentThread.ManagedThreadId);

 // Some task

 Thread.Sleep(100);

 �Console.WriteLine("MyMethod for Task.id={0} and Thread id {1} is

completed.", Task.CurrentId, Thread.CurrentThread.ManagedThreadId);

 }

You can see that inside MyMethod(), to distinguish the tasks and threads, their

corresponding IDs are printed in the console.

One last thing. You can see that the method name is passed as an argument inside

the StartNew() method. This method has 16 overloaded versions at the time of writing,

and I’m using the one that is defined as follows.

//

// Summary:

// Creates and starts a task.

//

// Parameters:

// action:

// The action delegate to execute asynchronously.

//

// Returns:

// The started task.

//

// Exceptions:

// T:System.ArgumentNullException:

// The action argument is null.

public Task StartNew(Action action);

Since MyMethod() matches the signature of the Action delegate in this case, there

was no problem using this method with StartNew.

Chapter 6 Asynchronous Programming

260

�Demonstration 9
Now go through the complete demonstration and output.

using System;

using System.Threading;

using System.Threading.Tasks;

namespace CreatingTasks

{

 class Program

 {

 static void Main(string[] args)

 {

 �Console.WriteLine("***Using different ways to create

tasks.****");

 �Console.WriteLine("Inside Main().Thread ID:{0}",

Thread.CurrentThread.ManagedThreadId);

 #region Different ways to create and execute task

 // Using constructor

 Task taskOne = new Task(MyMethod);

 taskOne.Start();

 // Using task factory

 TaskFactory taskFactory = new TaskFactory();

 // StartNew Method creates and starts a task.

 // It has different overloaded version.

 Task taskTwo = taskFactory.StartNew(MyMethod);

 // Using task factory via a task

 Task taskThree = Task.Factory.StartNew(MyMethod);

 #endregion

 Console.ReadKey();

 }

 private static void MyMethod()

 {

 �Console.WriteLine("Task.id={0} with Thread id {1}

has started.", Task.CurrentId, Thread.CurrentThread.

ManagedThreadId);

Chapter 6 Asynchronous Programming

261

 Thread.Sleep(100);

 �Console.WriteLine("MyMethod for Task.id={0} and Thread id

{1} is completed.", Task.CurrentId, Thread.CurrentThread.

ManagedThreadId);

 }

 }

}

�Output

This is a possible output.

Using different ways to create tasks.*
Inside Main().Thread ID:1

Task.id=2 with Thread id 6 has started.

Task.id=1 with Thread id 5 has started.

Task.id=3 with Thread id 4 has started.

MyMethod for Task.id=1 and Thread id 5 is completed.

MyMethod for Task.id=3 and Thread id 4 is completed.

MyMethod for Task.id=2 and Thread id 6 is completed.

�Q&A Session

6.9  StartNew() can be used only for methods that match the Action delegate
signature. Is this correct?

No. I used it in one of the StartNew overloads that accepts a parameter, which is

the name of a method that matches an Action delegate signature. But, there are other

overloaded versions of StartNew; for example, consider the following.

public Task<TResult> StartNew<[NullableAttribute(2)]TResult>

(Func<TResult> function, TaskCreationOptions creationOptions);

Or,

public Task<TResult> StartNew<[NullableAttribute(2)]TResult>

(Func<TResult> function, CancellationToken cancellationToken);

6.10  In a previous Q&A, I saw the use of TaskCreationOptions. What does it mean?
It is an enum. You can set a task’s behavior by using it. The following describes this

enum and includes the different options that you have.

Chapter 6 Asynchronous Programming

262

public enum TaskCreationOptions

{

 None = 0,

 PreferFairness = 1,

 LongRunning = 2,

 AttachedToParent = 4,

 DenyChildAttach = 8,

 HideScheduler = 16,

 RunContinuationsAsynchronously = 64,

}

In an upcoming demonstration, you see the use of an important enum called

TaskContinuationOptions, which also helps set a task behavior.

�Using a Task-based Asynchronous Pattern (TAP)
TAP first appeared in C# 4.0. It was the foundation of async/await, which appeared in C#

5.0. TAP introduced the Task class and its generic variant, Task<TResult>. Task is used

when the return value of an asynchronous chunk of code is not a concern, but when

you want the return value to proceed further, you should use the Task<TResult> generic

version. You already had an overview of tasks. Let’s use this concept to implement TAP

using Method1() and Method2().

�Demonstration 10
This is a complete demonstration.

using System;

using System.Threading;

using System.Threading.Tasks;

namespace UsingTAP

{

 class Program

 {

 static void Main(string[] args)

Chapter 6 Asynchronous Programming

263

 {

 �Console.WriteLine("***Using Task-based Asynchronous

Pattern.****");

 �Console.WriteLine("Inside Main().Thread ID:{0}",

Thread.CurrentThread.ManagedThreadId);

 Task taskForMethod1 = new Task(Method1);

 taskForMethod1.Start();

 Method2();

 Console.ReadKey();

 }

 private static void Method1()

 {

 Console.WriteLine("Method1() has started.");

 �Console.WriteLine("Inside Method1(),Thread id {0} .",

Thread.CurrentThread.ManagedThreadId);

 // Some big task

 Thread.Sleep(3000);

 Console.WriteLine("Method1() has completed its job now.");

 }

 private static void Method2()

 {

 Console.WriteLine("Method2() has started.");

 �Console.WriteLine("Inside Method2(),Thread id {0} .",

Thread.CurrentThread.ManagedThreadId);

 Thread.Sleep(100);

 Console.WriteLine("Method2() is completed.");

 }

 }

}

Chapter 6 Asynchronous Programming

264

�Output

This is a possible output.

Using Task-based Asynchronous Pattern.*
Inside Main().Thread ID:1

Method2() has started.

Inside Method2(),Thread id 1 .

Method1() has started.

Inside Method1(),Thread id 4 .

Method2() is completed.

Method1() has completed its job now.

You have just seen a sample demo of a task-based asynchronous pattern. I did

not care about the return value of Method1. But let’s say that you want to see whether

Method1 executed successfully or not. For simplicity, I’m using a string message to

indicate a successful completion. And this time you’ll see a generic variant of Task

which is Task<string>. For lambda expression lovers, I modified Method1 with a lambda

expression in this example. To fulfill the key requirement, I adjusted the return type. This

time I’m adding another method called Method3(). For a comparison purpose, initially

this method will be commented out and the program will be executed and output will be

analyzed. Later I’ll uncomment it, and create a task hierarchy using the method. Once

this is done, the program will be executed again, and you will notice that Method3()

executes when Method1() completes its job. I have kept the comments for a better

understanding.

Now go through the upcoming demonstration.

�Demonstration 11
This is a complete demonstration.

using System;

using System.Threading;

using System.Threading.Tasks;

Chapter 6 Asynchronous Programming

265

namespace UsingTAPDemo2

{

 class Program

 {

 static void Main(string[] args)

 {

 �Console.WriteLine("***Using Task-based Asynchronous Pattern.

Using lambda expression into it.****");

 �Console.WriteLine("Inside Main().Thread ID:{0}",

Thread.CurrentThread.ManagedThreadId);

 // Task taskForMethod1 = new Task(Method1);

 // taskForMethod1.Start();

 Task<string> taskForMethod1 = Method1();

 // Wait for task to complete.It’ll be no more

 //asynchonous now.

 // taskForMethod1.Wait();

 // Continue the task

 // The taskForMethod3 will continue once taskForMethod1 is

 // finished

 // �Task taskForMethod3 = taskForMethod1.ContinueWith(Method3,

TaskContinuationOptions.OnlyOnRanToCompletion);

 Method2();

 �Console.WriteLine("Task for Method1 was a : {0}",

taskForMethod1.Result);

 Console.ReadKey();

 }

 // Using lambda expression

 private static Task<string> Method1()

 {

 return Task.Run(() =>

 {

 string result = "Failure";

 try

 {

Chapter 6 Asynchronous Programming

266

 �Console.WriteLine("Inside Method1(),Task.id={0}",

Task.CurrentId);

 Console.WriteLine("Method1() has started.");

 �Console.WriteLine("Inside Method1(),Thread id {0} .",

Thread.CurrentThread.ManagedThreadId);

 //Some big task

 Thread.Sleep(3000);

 �Console.WriteLine("Method1() has completed its job

now.");

 result = "Success";

 }

 catch (Exception ex)

 {

 Console.WriteLine("Exception caught:{0}", ex.Message);

 }

 return result;

 }

);

 }

 private static void Method2()

 {

 Console.WriteLine("Method2() has started.");

 �Console.WriteLine("Inside Method2(),Thread id {0} .",

Thread.CurrentThread.ManagedThreadId);

 Thread.Sleep(100);

 Console.WriteLine("Method2() is completed.");

 }

 private static void Method3(Task task)

 {

 Console.WriteLine("Method3 starts now.");

 �Console.WriteLine("Task.id is:{0} with Thread id is :{1} ",

Task.CurrentId, Thread.CurrentThread.ManagedThreadId);

 Thread.Sleep(20);

Chapter 6 Asynchronous Programming

267

 �Console.WriteLine("Method3 for Task.id {0} and Thread id

{1} is completed.", Task.CurrentId, Thread.CurrentThread.

ManagedThreadId);

 }

 }

}

�Output

Using Task-based Asynchronous Pattern.Using lambda expression into it.*
Inside Main().Thread ID:1

Method2() has started.

Inside Method2(),Thread id 1 .

Inside Method1(),Task.id=1

Method1() has started.

Inside Method1(),Thread id 4 .

Method2() is completed.

Method1() has completed its job now.

Task for Method1 was a : Success

�Analysis

Did you notice that I did not use the Start() method for taskForMethod1? Instead, I used

the Run() method from the Task class to execute Method1(). Why did I do that? Well,

inside Task class, Run is a static method. The method summary in Visual Studio tells us the

following about this Run method: "Queues the specified work to run on the thread

pool and returns a System.Threading.Tasks.Task`1 object that represents that

work." At the time of writing, this method has eight overloaded versions, as follows.

public static Task Run(Action action);

public static Task Run(Action action, CancellationToken cancellationToken);

public static Task<TResult> Run<TResult>(Func<TResult> function);

public static Task<TResult> Run<TResult>(Func<TResult> function,

CancellationToken cancellationToken);

public static Task Run(Func<Task> function);

public static Task Run(Func<Task> function, CancellationToken cancellationToken);

Chapter 6 Asynchronous Programming

268

public static Task<TResult> Run<TResult>(Func<Task<TResult>> function);

public static Task<TResult> Run<TResult>(Func<Task<TResult>> function,

CancellationToken cancellationToken);

Now check another important point in this example. If you uncomment the

following line

// Task taskForMethod3 = taskForMethod1.ContinueWith(Method3,

TaskContinuationOptions.OnlyOnRanToCompletion);

and run the application again, you can get an output similar to the following.

Using Task-based Asynchronous Pattern.Using lambda expression into it.*
Inside Main().Thread ID:1

Method2() has started.

Inside Method1(),Task.id=1

Method1() has started.

Inside Method1(),Thread id 4 .

Inside Method2(),Thread id 1 .

Method2() is completed.

Method1() has completed its job now.

Task for Method1 was a : Success

Method3 starts now.

Task.id is:2 with Thread id is :5

Method3 for Task.id 2 and Thread id 5 is completed.

The ContinueWith() method helps continue a task. You may also note the following part.

TaskContinuationOptions.OnlyOnRanToCompletion

It simply states that the task will continue when taskForMethod1 completes its job.

Similarly, you can opt for other options by using the TaskContinuationOptions enum,

which has the following description.

public enum TaskContinuationOptions

{

 None = 0,

 PreferFairness = 1,

 LongRunning = 2,

 AttachedToParent = 4,

Chapter 6 Asynchronous Programming

269

 DenyChildAttach = 8,

 HideScheduler = 16,

 LazyCancellation = 32,

 RunContinuationsAsynchronously = 64,

 NotOnRanToCompletion = 65536,

 NotOnFaulted = 131072,

 OnlyOnCanceled = 196608,

 NotOnCanceled = 262144,

 OnlyOnFaulted = 327680,

 OnlyOnRanToCompletion = 393216,

 ExecuteSynchronously = 524288

}

�Q&A Session
6.11  Can I assign multiple tasks at a time?
Yes, you can. In the previously modified example, let’s suppose that you have a

method called Method4 with the following description.

private static void Method4(Task task)

{

 Console.WriteLine("Method4 starts now.");

 �Console.WriteLine("Task.id is:{0} with Thread id is :{1} ",

Task.CurrentId, Thread.CurrentThread.ManagedThreadId);

 Thread.Sleep(10);

 �Console.WriteLine("Method4 for Task.id {0} and Thread id {1} is

completed.", Task.CurrentId, Thread.CurrentThread.ManagedThreadId);

}

You can write the following lines.

Task<string> taskForMethod1 = Method1();

Task taskForMethod3 = taskForMethod1.ContinueWith(Method3,

TaskContinuationOptions.OnlyOnRanToCompletion);

 taskForMethod3 = taskForMethod1.ContinueWith(Method4,

TaskContinuationOptions.OnlyOnRanToCompletion);

Chapter 6 Asynchronous Programming

270

This means that once taskForMethod1 completes the task, you see the continuation

work with taskForMethod3, which executes both Method3 and Method4.

It is also important to note that continuation work can have continuation work. For

example, let’s suppose that you want the following.

•	 Once taskForMethod1 finishes, then to continue with

taskForMethod3.

•	 Once taskForMethod3 finishes, then only to continue with

taskForMethod4

You can write something similar to the following.

// Method1 starts

Task<string> taskForMethod1 = Method1();

// Task taskForMethod3 starts after Task taskForMethod1

Task taskForMethod3 = taskForMethod1.ContinueWith(Method3,

TaskContinuationOptions.OnlyOnRanToCompletion);

// Task taskForMethod4 starts after Task taskForMethod3

Task taskForMethod4 = taskForMethod3.ContinueWith(Method4,

TaskContinuationOptions.OnlyOnRanToCompletion);

�Using the async and await Keywords
The use of async and await keywords makes the TAP pattern super flexible. This chapter

has used two methods, in which the first method is a long-running method and takes

more time to complete than the second method. I continue the case studies with the

same Method1() and Method2() methods.

In the upcoming demonstration, I use async and await keywords. I start with a non-

lambda version, but in the analysis section, I give the lambda expression variant of the

code. First, let’s look at Method1() again.

private static void Method1()

{

 Console.WriteLine("Method1() has started.");

 �Console.WriteLine("Inside Method1(),Thread id {0} .", Thread.

CurrentThread.ManagedThreadId);

Chapter 6 Asynchronous Programming

271

 // Some big task

 Thread.Sleep(3000);

 Console.WriteLine("Method1() has completed its job now.");

}

When you use lambda expressions and an async/await pair, your code may look like

the following.

// Using lambda expression

private static async Task ExecuteMethod1()

{

 await Task.Run(() =>

 {

 Console.WriteLine("Method1() has started.");

 �Console.WriteLine("Inside Method1(),Thread id {0} .",

Thread.CurrentThread.ManagedThreadId);

 // Some big task

 Thread.Sleep(3000);

 Console.WriteLine("Method1() has completed its job now.");

 }

);

 }

Have you noticed that the synchronous version and the asynchronous version

are very similar? But many of the earlier solutions to implement asynchronous

programming were not like this. (I also believe that they were complex.)

What does await do? When you analyze the code, you find that once you get an

await, the calling thread jumps out of the method and continues with something else.

In the upcoming demonstration, Task.Run is used; it causes the asynchronous call to

continue on a separate thread. It should be noted, however, that this does not mean that

the continuation work should be done on a new thread, because you may not always be

concerned about different threads; for example, when your call is waiting to establish a

connection over a network to download something.

Chapter 6 Asynchronous Programming

272

In the non-lambda version, I use the following block of code.

private static async Task ExecuteTaskOne()

{

 await Task.Run(Method1);

}

Inside Main(), instead of calling Method1(), ExecuteTaskOne() executes Method1()

asynchronously. I passed Method1 inside the Run method. I used the shortest overloaded

version of the Run method here. Since Method1 matches the signature of an Action

delegate (remember that this delegate encapsulates any method with no parameter and

void return type), you can pass it as an argument in the Run method of the Task class.

�Demonstration 12
This is the complete demonstration.

using System;

using System.Threading;

using System.Threading.Tasks;

namespace UsingAsyncAwaitDemo

{

 class Program

 {

 static void Main(string[] args)

 {

 �Console.WriteLine("***Exploring task-based asynchronous

pattern(TAP) using async and await.****");

 �Console.WriteLine("Inside Main().Thread ID:{0}",

Thread.CurrentThread.ManagedThreadId);

 /*
 * This call is not awaited.So,the current method

 * continues before the call is completed.

 */

 ExecuteTaskOne();//Async call,this call is not awaited

 Method2();

Chapter 6 Asynchronous Programming

273

 Console.ReadKey();

 }

 private static async Task ExecuteTaskOne()

 {

 await Task.Run(Method1);

 }

 private static void Method1()

 {

 Console.WriteLine("Method1() has started.");

 �Console.WriteLine("Inside Method1(),Thread id {0} .",

Thread.CurrentThread.ManagedThreadId);

 // Some big task

 Thread.Sleep(3000);

 Console.WriteLine("Method1() has completed its job now.");

 }

 private static void Method2()

 {

 Console.WriteLine("Method2() has started.");

 �Console.WriteLine("Inside Method2(),Thread id {0} .",

Thread.CurrentThread.ManagedThreadId);

 Thread.Sleep(100);

 Console.WriteLine("Method2() is completed.");

 }

 }

}

�Output

This is a possible output.

***Exploring task-based asynchronous pattern(TAP) using async and

await.****
Inside Main().Thread ID:1

Method1() has started.

Inside Method1(),Thread id 4 .

Chapter 6 Asynchronous Programming

274

Method2() has started.

Inside Method2(),Thread id 1 .

Method2() is completed.

Method1() has completed its job now.

�Analysis

You can see that Method1() started earlier but Method2()’s execution was not blocked for

that. Also note that Method2() ran inside a main thread, whereas Method1() executed in

a different thread.

Like previous cases, if you like lambda expressions, you could replace the following

code segment:

private static async Task ExecuteTaskOne()

{

 await Task.Run(Method1);

}

private static void Method1()

{

 Console.WriteLine("Method1() has started.");

 �Console.WriteLine("Inside Method1(),Thread id {0} .",

Thread.CurrentThread.ManagedThreadId);

 // Some big task

 Thread.Sleep(3000);

 Console.WriteLine("Method1() has completed its job now.");

}

with this one:

// Using lambda expression

private static async Task ExecuteMethod1()

{

 await Task.Run(() =>

 {

 Console.WriteLine("Method1() has started.");

 �Console.WriteLine("Inside Method1(),Thread id {0} .",

Thread.CurrentThread.ManagedThreadId);

Chapter 6 Asynchronous Programming

275

 // Some big task

 Thread.Sleep(3000);

 Console.WriteLine("Method1() has completed its job now.");

 }

);

}

In demonstration 12, instead of calling ExecuteTaskOne(), you can directly call the

ExecuteMethod1() method to get similar output.

In the previous example, you see a warning message for the following line:

ExecuteMethod1(); which states the following.

Warning CS4014 Because this call is not awaited, execution of the current

method continues before the call is completed. Consider applying the

'await' operator to the result of the call.

If you hover your mouse on this, you get two suggestions. First one suggests you to

apply discard as follows:

_ = ExecuteMethod1(); // applying discard

Note  The discards are supported in C #7.0 onward. They are temporary,
dummy, and unused variables in an application. Since these variables may not
be in allocated storage, they can reduce memory allocation. These variables can
enhance better readability and maintainability. Use an underscore (_) to indicate a
discarded variable in your application.

The following uses the second suggestion and inserts await prior to the line.

await ExecuteMethod1();

The compiler raises another error in that case.

Chapter 6 Asynchronous Programming

276

Error CS4033 The 'await' operator can only be used within an async

method. Consider marking this method with the 'async' modifier and changing

its return type to 'Task'.

To remove this error, you need to make the containing method async (i.e., start with

the following line as follows:

static async Task Main(string[] args)

After applying the async/await pair, the Main() method may look like the following.

class Program

{

 // static void Main(string[] args)

 static async Task Main(string[] args)

 {

 �Console.WriteLine("***Exploring task-based asynchronous

pattern(TAP) using async and await.****");

 �Console.WriteLine("Inside Main().Thread ID:{0}",

Thread.CurrentThread.ManagedThreadId);

 await ExecuteMethod1();

 // remaining code

This overall discussion reminds you to apply async/await together and place them

properly.

I finish the chapter with another demonstration, in which I slightly modify the calling

sequence of the application. I use Method3(), which is similar to Method2(). This method

is called from ExecuteTaskOne(), which has the following structure.

private static async Task ExecuteTaskOne()

{

 �Console.WriteLine("Inside ExecuteTaskOne(), prior to await() call.");

 int value=await Task.Run(Method1);

 Console.WriteLine("Inside ExecuteTaskOne(), after await() call.");

 // Method3 will be called if Method1 executes successfully

 if (value != -1)

 {

 Method3();

 }

}

Chapter 6 Asynchronous Programming

277

This segment of code simply says that I want to grab the return value from Method1(), and

based on that value, I decide whether I call Method3() or not. This time, Method1()’s return

type is not void; instead, it is returning an int (0 for successful completion; otherwise, –1). This

method is restructured with a try-catch block like the following.

private static int Method1()

{

 int flag = 0;

 try

 {

 Console.WriteLine("Method1() has started.");

 �Console.WriteLine("Inside Method1(),Thread id {0} .",

Thread.CurrentThread.ManagedThreadId);

 // Some big task

 Thread.Sleep(3000);

 Console.WriteLine("Method1() has completed its job now.");

 }

 catch (Exception e)

 {

 Console.WriteLine("Caught Exception {0}", e);

 flag = -1;

 }

 return flag;

}

Now go through the following example.

�Demonstration 13
This is the complete demonstration.

using System;

using System.Threading;

using System.Threading.Tasks;

namespace UsingAsyncAwaitDemo3

{

Chapter 6 Asynchronous Programming

278

 class Program

 {

 static void Main(string[] args)

 {

 �Console.WriteLine("***Exploring task-based asynchronous

pattern(TAP) using async and await.****");

 �Console.WriteLine("***This is a modified example with three

methods.***");

 �Console.WriteLine("Inside Main().Thread ID:{0}",

Thread.CurrentThread.ManagedThreadId);

 /*
 * This call is not awaited.So,the current method

 * continues before the call is completed.

 */

 _=ExecuteTaskOne();//Async call,this call is not awaited

 Method2();

 Console.ReadKey();

 }

 private static async Task ExecuteTaskOne()

 {

 �Console.WriteLine("Inside ExecuteTaskOne(), prior to await()

call.");

 int value=await Task.Run(Method1);

 �Console.WriteLine("Inside ExecuteTaskOne(), after await()

call.");

 // Method3 will be called if Method1 executes successfully

 if (value != -1)

 {

 Method3();

 }

 }

 private static int Method1()

 {

 int flag = 0;

 try

Chapter 6 Asynchronous Programming

279

 {

 Console.WriteLine("Method1() has started.");

 �Console.WriteLine("Inside Method1(),Thread id {0} .",

Thread.CurrentThread.ManagedThreadId);

 //Some big task

 Thread.Sleep(3000);

 Console.WriteLine("Method1() has completed its job now.");

 }

 catch (Exception e)

 {

 Console.WriteLine("Caught Exception {0}", e);

 flag = -1;

 }

 return flag;

 }

 private static void Method2()

 {

 Console.WriteLine("Method2() has started.");

 �Console.WriteLine("Inside Method2(),Thread id {0} .",

Thread.CurrentThread.ManagedThreadId);

 Thread.Sleep(100);

 Console.WriteLine("Method2() is completed.");

 }

 private static void Method3()

 {

 Console.WriteLine("Method3() has started.");

 �Console.WriteLine("Inside Method3(),Thread id {0} .",

Thread.CurrentThread.ManagedThreadId);

 Thread.Sleep(100);

 Console.WriteLine("Method3() is completed.");

 }

 }

}

Chapter 6 Asynchronous Programming

280

�Output

Exploring task-based asynchronous pattern(TAP) using async and await.*

This is a modified example with three methods.
Inside Main().Thread ID:1

Inside ExecuteTaskOne(), prior to await() call.

Method1() has started.

Inside Method1(),Thread id 4 .

Method2() has started.

Inside Method2(),Thread id 1 .

Method2() is completed.

Method1() has completed its job now.

Inside ExecuteTaskOne(), after await() call.

Method3() has started.

Inside Method3(),Thread id 4 .

Method3() is completed.

�Analysis

Note the output closely. You can see that Method3() needs to wait for Method1()’s

completion, but Method2() could finish its execution before Method1() ends its execution.

Here Method3() can continue if the returned value from Method1() is not equal to –1.

This scenario is similar to the case in which you saw the ContinueWith() method in

demonstration11.

Most importantly, note the following line of code once more.

int value=await Task.Run(Method1);

It simply divides the code segment into two parts: prior call to await and post call

to await. This syntax is similar to any synchronous call, but by using await (inside

an async method), you apply a suspension point and use the power of asynchronous

programming.

I finish this chapter with some interesting notes from Microsoft. They are handy as

you further explore the async/await keywords. Remember the following points.

•	 The await operator cannot be present in the body of a lock statement.

Chapter 6 Asynchronous Programming

281

•	 You may see multiple awaits inside the body of an async method.

The absence of await inside an async method will not raise any

compile-time error. Instead, you get a warning, and the method

executes in a synchronous fashion. Note the following warning

in a similar context: Warning CS1998 This async method lacks

'await' operators and will run synchronously. Consider

using the 'await' operator to await non-blocking API

calls, or 'await Task.Run(...)' to do CPU-bound work on a

background thread.

�Final Words
Another big chapter! Hopefully, I was able to demystify the different approaches to

asynchronous programming. Although the IAsyncResult pattern and event-based

asynchrony are no longer recommended for future developments, I discussed them

in this chapter to help you understand legacy code and show you the evolution of

asynchronous programs. Undoubtedly, you’ll find it useful in the future.

Now you are ready to jump into the vast ocean of asynchronous programming and

explore the remaining corner cases, which can’t be mastered without self-practice. So,

keep pressing on.

You have seen many applications based on delegates, events, and lambda

expressions so far! Now let’s move into the final chapter, which is on database

programming. It is a little different but very useful and interesting.

�Summary
This chapter addressed the following key questions.

•	 What is an asynchronous program? How is it different from a

synchronous program?

•	 How do you write an asynchronous program using the Thread class?

•	 What is a thread pool? How do you write an asynchronous program

using the ThreadPool class?

Chapter 6 Asynchronous Programming

282

•	 How do you use lambda expressions inside an asynchronous

program?

•	 How do you write asynchronous programs following an Event-based

Asynchronous Pattern?

•	 What is a task? How can you use the Task class in your program?

•	 How do you write asynchronous programs following a Task-based

Asynchronous Pattern?

•	 How do you write an asynchronous program using the async/await

keywords?

•	 How do you use discards in your application?

•	 What are some important restrictions when you use the async/await

keywords in your program?

Chapter 6 Asynchronous Programming

283
© Vaskaran Sarcar 2020
V. Sarcar, Getting Started with Advanced C#, https://doi.org/10.1007/978-1-4842-5934-4_7

CHAPTER 7

Database Programming
C# client applications can talk to a database using ADO.NET. Collectively, it is a set of

classes (often called a framework) that can help you connect a datasource, such as an

XML file or a database. Using these classes (and the corresponding methods), you can

manipulate the required data. It is another big topic, but I limit the discussion to how a

simple C# application can talk to a RDBMS (relational database management system)

using SQL queries.

When I talk about RDBMS, there are multiple choices. For example, Oracle,

Microsoft SQL Server, and MySQL are some of the key players. In fact, in many books,

ADO.NET is discussed with Microsoft SQL Server. In this chapter, MySQL is the preferred

relational database. But the good news is that the underlying approach doesn’t change

much when you choose a different option (for example, Microsoft SQL Server).

There are alternative approaches for talking to a database. For example, instead of

using ADO.NET, a developer can chose Entity Framework (EF), which is based on object-

relational mapping (ORM). So, instead of directly writing SQL queries, they deal with

classes (or objects) and use LINQ queries. Although a detailed discussion is beyond the

scope of this chapter, it may be useful to know that since EF is built on top of ADO.NET,

it isn’t faster than using ADO.NET (but it can make your code development faster and

neatly organized). Also, when you troubleshoot data access issues, understanding the

core responsibilities of ADO.NET can make programming easier.

To experience database programming, you need to be familiar with the following

concepts.

•	 What a database is and how it helps you store or organize data

•	 How a database is connected

•	 How a C# application talks to a database (i.e, how you establish a

connection to a database, and how you insert, update, or delete a

record in a database)

https://doi.org/10.1007/978-1-4842-5934-4_7#ESM

284

Figure 7-1 presents a simplified view of the overall process of a client application

(a C# program) and a database connecting using ADO.NET.

Note  You can store data in various ways; for example, you use a database, you
may store the data in text files, and so forth. In this chapter, I use the terms data
store and database interchangeably.

If you are new to database programming, you may need to learn the key terms,

which are covered briefly in this chapter. I recommend that you go over these definitions

repeatedly to better understand them. Gradually, these terms will become clearer to you.

�Database and DBMS
A database is an organized collection of data. For example, depending on its type, a

database can be a collection related files (or, tables). A table can be a collection of related

records where each record can be a collection of related fields. A field is the smallest

piece of meaningful information in a file (or, table).

A database management system (DBMS) creates and manages databases effectively.

Oracle Database, SQL Server, MySQL, and MS Access are popular DBMS packages.

In general, a collection of databases, DBMS, and corresponding applications can

form a database system.

Figure 7-1.  Connecting a C# application to a database through ADO.NET

Chapter 7 Database Programming

285

�Types of DBMS
There are different types of DBMS, including the following.

•	 Hierarchical DBMS (HDBMS)

•	 Network DBMS (NDBMS)

•	 Relational DBMS (RDBMS)

•	 Object-oriented database (OODB)

•	 Distributed DBMS (DDBMS)

Each has its own pros and cons. Selecting a database depends on your needs. Rather

than choosing a SQL data structure (which is suitable for a RDBMS), you may prefer

NoSQL (a nonrelational structure suitable for a DDBMS). In this chapter, you see the

usage of a RDBMS and simple SQL statements only.

�RDBMS
In a RDBMS, data is stored in rows and columns, which is similar to tables. You may

see common terms, such as relation, tuple, and attribute. When you use SQL, formal

relational model terms—relations, tuples, and attributes—are used for tables, rows, and

columns, respectively.

Each row of a table contains a record. Each column contains fields. The table shown

in Figure 7-2 marks all the records and attributes.

Figure 7-2.  A sample table is marked with records and attributes

Chapter 7 Database Programming

286

You can process different records of a relation based on a mathematical formulation

known as relational algebra. Since the entire database can be processed using it,

relational algebra is the theoretical foundation for relational databases and SQL.

Oracle Database, MySQL, Microsoft SQL Server, and IBM DB2 are common

examples of RDBMS; in this chapter, I use MySQL to demonstrate the examples.

Note A ppendix A includes the steps to install MySQL in a Win10 machine.

�SQL
SQL stands for Structured Query Language. It is a very popular and widely used RDBMS

language. It is an English-like language and considered a fourth-generation language.

Create data, update data, read data, and delete data are the most common operations

with SQL.

POINTS TO REMEMBER

•	 C#, Java, C++, and C are examples of general-purpose languages. Each is

commonly categorized as a third-generation language (3GL), whereas SQL is

known as 4GL. In 3GL, the focus is on “How do I solve a problem?” but in 4GL,

the focus is on “What results do I want?” but instead of supplying the means,

you have freedom to let your computer/machine to decide how to obtain it.

Although an advance 3GL can combine some of the important aspects of 4GL.

•	 It is important to note that SQL does not differentiate between uppercase and

lowercase character sets, but most often it is necessary to use uppercase

keywords.

•	 Simple SQL statements are used in various programs in this chapter. If you are

new to SQL, I recommend that you do exersices with simple SQL statements in

your preferred database to get a better idea before you further proceed.

I assume that you have installed MySQL on your local computer. If it is not installed

yet, go to https://dev.mysql.com/downloads/installer/ to download the installer

and learn relevant information. You can also refer to Appendix A, which includes the

steps to install MySQL in a Win10 machine.

Chapter 7 Database Programming

https://dev.mysql.com/downloads/installer/

287

When I wrote a similar chapter on a different technology for another book, mysql-

installer-community-8.0.16.0 was the latest version. But as I went forward, updates kept

coming, and I kept updating. Finally, I settled on 8.0.19.

Installing the database is a first step. Then you need a vendor-specific connector.

I used MySQL, and the .NET Framework. I searched for a connector suitable for me. I

went to https://dev.mysql.com/downloads/connector/net/, as shown in Figure 7-3.

Once you have downloaded the zipped file, extract it to get the connector. It is

highly recommended that you visit the official website (https://dev.mysql.com/

doc/connector-net/en/connector-net-versions.html) to learn more about .NET

connectors. I can’t resist mentioning the following interesting points.

Figure 7-3.  Download the connector

Chapter 7 Database Programming

https://dev.mysql.com/downloads/connector/net/
https://dev.mysql.com/doc/connector-net/en/connector-net-versions.html
https://dev.mysql.com/doc/connector-net/en/connector-net-versions.html

288

•	 There are several versions of MySQL Connector/NET available.

•	 The official website says that MySQL Connector/NET 8.0 is a

continuation of Connector/NET 7.0, and currently named to

synchronize the first digit of the version number with the (highest)

MySQL server version it supports.

•	 MySQL Connector/NET 8.0 is highly recommended for use with

MySQL Server 8.0, 5.7, and 5.6. Based on your system configuration,

you may need to upgrade and use the proper version of the

connector. It’s worth looking at the table on the website, as shown in

Figure 7-4, before you proceed.

•	 The version of Visual Studio installed on my computer is 16.3.9.

The MySQL version is 8.0.18. I used .NET Core 3.0 for many of the

examples in this book. So, it makes sense to use connector version 8.0

and higher.

Figure 7-4.  Connector/NET requirement for related products
(Source: https://dev.mysql.com/doc/connector-net/en/connector-net-
versions.html)

Chapter 7 Database Programming

https://dev.mysql.com/doc/connector-net/en/connector-net-versions.html
https://dev.mysql.com/doc/connector-net/en/connector-net-versions.html

289

•	 Once installed, you need to add a MySql.Data.dll reference to your

project. On my machine, I used C:\Program Files (x86)\MySQL\

MySQL Connector Net 8.0.19\Assemblies\v4.5.2. Once you do this, to

verify the information, open the Properties window. Note the arrow

in Figure 7-5. It is an ADO.NET driver for MySQL for .NET Framework

and .NET Core.

•	 If you use .NET Core, you may need to install a MySql.Data package

before you proceed. You can use Visual Studio to add the package.

Or, you can go to Tools ➤ NuGet Package Manager ➤ Package

Manger Console and type the following command (the version may

differ in your case):

PM> Install-Package MySql.Data -Version 8.0.19

Once you do it properly, you see a screen similar to Figure 7-6.

Figure 7-5.  MySql.Data is the ADO.NET for MySQL for .NET Framework and
.NET Core

Chapter 7 Database Programming

290

�A Brief Discussion of ADO.NET
Since I’m going to use ADO.NET in upcoming demonstrations, let’s have a quick

discussion about it. First, it is an object-oriented framework and very flexible. In

traditional approaches, you must open a connection to connect a database, and then

exercise simple SQL queries. Your application is always connected to the database. As

a result, even if you do not use the data store, expensive database resources are used,

which reduce the overall performance and efficiency of your application.

To overcome this, ADO.NET also supports disconnected data architecture, which

says that when you need to run a SQL query, you connect to the database, get the result,

and disconnect the connection immediately. To hold these results, you use a local

buffer, called a DataSet. But keep in mind that ADO.NET can support the traditional

connection-oriented services too, and there you use a DataReader. In this chapter, I

show you both a traditional connection-oriented implementation and its counterpart

disconnected data architecture implementation.

Note A DO stands for ActiveX Data Objects. But Microsoft’s COM-based data
access model (ADO) is different from ADO.NET. Yes, there are some similarities (for
example, Command and Connection objects) but they are largely different. Many
ADO.NET types do not have a direct equivalent in ADO (e.g., DataAdapter). ADO
has a small number of datatypes that support the COM standard; whereas ADO.
NET is made for .NET applications that connect databases, and it supports a large
number of datatypes.

Figure 7-6.  MySql.Data is added successfully in the .NET Core application

Chapter 7 Database Programming

291

�Understanding the Code
In C#, there are lots of classes, interfaces, methods, and properties involved in database

programming. A detailed description of each of them is not essential at this level.

(Honestly, if you start with the detailed descriptions of all these terms, it may bore you.

They are remembered with practice.) So, let’s focus on the part that is necessary to

understand in the upcoming demonstrations.

In the first two demonstrations, I use a connection-oriented architecture. In this

approach, your codebase explicitly connects to the data store, and once the data

processing is done, it disconnects from the data store. You commonly see the use of

Connection objects, Command objects, and DataReader objects.

In the third demonstration, you see the use of disconnected data architecture. In this

approach, you first see a DataSet object, which can store the tables, the relationships,

and the constraints (that are applied on the tables). Once you obtain this object, you

can use it to traverse or manipulate the data and use it as a client-side copy (i.e., local

copy). A user can make changes to the local copies and apply the changes to the actual

database later. This approach speeds up data processing. It reduces network traffic and

improves the overall performance of the application.

In ADO.NET, you do not see single sets of objects to connect different DBMSes;

instead, there are various data providers. These providers are optimized to connect

a specific DBMS, such as Oracle, MySQL, and Microsoft SQL Server. For example,

Microsoft provides specialized and optimized classes for SQL Server databases. These

classes start with Sql and are contained in System.Data.SqlClient.

Similarly, in our case, the class names start with MySql; for example,

MySqlConnection, MySqlCommandBuilder, and MySqlDataReader. To use these classes in

my program, the following namespace is needed.

using MySql.Data.MySqlClient;

You can correctly assume that each provider gives you a set of types in a namespace.

To use these types in your program, you need to include the corresponding namespace

and install the correct NuGet package (you learned the steps to install a MySql.Data

package in your program). At this stage, it doesn’t matter which database management

system you choose. In general, to support the core functionalities of database

programming, each provider offers similar classes and interfaces. You get a better idea of

this when you see the demonstrations.

Chapter 7 Database Programming

292

First, let me introduce you to some common types of objects that are frequently used

in database programming, summarized as follows.

•	 Connection object: Connects and disconnects a data store.

•	 Command object: Represents SQL queries and stores procedures.

(Stored procedures are discussed later.)

•	 DataReader object: Reads data from a database in a connected

architecture.

•	 DataAdapter object: Connects to a database, fetches records from it,

and fills a local buffer (DataSet). In a disconnected architecture, its

role is vital.

•	 Parameter object: Represents parameters in a parameterized query.

Although the specific names of the core classes for each provider differ, since the

classes are inherited from the same base classes and implement identical interfaces,

you can assume how to work with a vendor-specific database. For example, since I’m

using a MySQL database, you see the use of MySqlConnection, MySqlDataReader, and

MySqlCommand in my programs.

Similarly, other vendors provide names that follow a general naming convention.

Each provider prefixes the name of the related DBMS with their constructs. So, if

you connect to a SQL server, you may see the use of SqlConnection, SqlDataReader,

SqlCommand, and so forth, in a similar context.

It is interesting to note that there is no class named Connection. The same holds

true for other objects, such as Command objects, DataAdapter objects, and so forth. So, in

these contexts, you only see the vendor-specific names (for example, MySqlConnection,

MySqlCommandBuilder, MySqlDataReader, etc.).

Let’s start coding. In the upcoming demonstration, you see the following lines of code.

static MySqlConnection mySqlConnection = null;

static MySqlCommand mySqlCommand = null;

static MySqlDataReader mySqlDataReader = null;

Let’s focus on these three elements: MySqlConnection, MySqlCommand, and

MySqlDataReader. I used “static” variables, but this is not required. To share the common

copies and to avoid repeated initialization in different methods, I made them static in

these programs.

Chapter 7 Database Programming

293

Note T here are partial/full screenshots from Visual Studio IDE for your immediate
reference. I explain the important characteristics.

�MySqlConnection
MySqlConnection is a sealed class that inherits DbConnection. Figure 7-7 is a partial

screenshot from Visual Studio IDE for the MySqlConnection class.

If you go deep, you see that DbConnection derives from IDbConnection. Figure 7-8 is

a partial screenshot from Visual Studio IDE for the DbConnection class.

IDbConnection is contained in the System.Data namespace, and it has the methods

shown in Figure 7-9.

Figure 7-7.  Partial screenshot of MySqlConnection class from Visual Studio 2019

Figure 7-8.  Partial screenshot of DbConnection class from Visual Studio 2019

Chapter 7 Database Programming

294

These interface members configure a connection to a specific data store. You can

always expand the method description to see information about the method. But at

a high level, you can see that a data provider type needs to override the abstract class

methods or implement the interface methods. MySqlConnection is doing this.

�MySqlCommand
MySqlCommand is a sealed class that inherits from DbCommand. Figure 7-10 is a partial

screenshot from Visual Studio IDE for the MySqlCommand class.

Figure 7-9.  Partial screenshot of IDbConnection interface from Visual Studio 2019

Figure 7-10.  Partial screenshot of MySqlCommand class from Visual Studio 2019

Chapter 7 Database Programming

295

DbCommand is an abstract class that provides a base class for database-specific classes

that represent various commands. It contains a method called ExecuteReader() with the

following description.

//

// Summary:

// Executes the System.Data.Common.DbCommand.CommandText against the

// System.Data.Common.DbCommand.Connection,

// and returns an System.Data.Common.DbDataReader.

//

// Returns:

// A System.Data.Common.DbDataReader object.

public DbDataReader ExecuteReader();

The MySqlCommand class overrides this method. In demonstration 1, you see the

usage of this class in the following segment of code.

mySqlCommand = new MySqlCommand(sqlQuery,mySqlConnection);

mySqlDataReader = mySqlCommand.ExecuteReader();

From this segment, you can see that I’m making a MySqlCommand object using the

following line.

mySqlCommand = new MySqlCommand(sqlQuery,mySqlConnection);

In the partial screenshot of the MySqlCommand class, there are four overloaded

constructor versions available. In this code segment, I used the following version.

// Summary:

// �Initializes a new instance of the MySql.Data.MySqlClient.

MySqlCommand class with the text of the query and a MySql.Data.

MySqlClient.MySqlConnection.

//(Other details omitted)

public MySqlCommand(string cmdText, MySqlConnection connection);

Then I used the ExecuteReader() method to build a MySqlDataReader object.

Chapter 7 Database Programming

296

�MySqlDataReader
MySqlDataReader is a sealed class that extends DbDataReader, IDataReader,

IDataRecord, and IDisposable. Figure 7-11 is a partial screenshot from VS2019; it shows

information about MySqlDataReader.

The class members help you read a forward-only stream of rows from a MySQL

database. In other words, once you get an object of MySqlDataReader, you can iterate

over the results in a read-only and forward-only manner. The word forward-only means

that once you point to record 2, you cannot go back to record 1, and so on.

Figure 7-12 shows a summary of IDataReader.

You can see that IDataReader extends the IDataRecord interface, which contains

many methods. The interface definition tells us that these methods can access the

column values within each row of a DataReader. You can also extract a strongly typed

value from a stream.

Figure 7-11.  Partial screenshot of MySqlDataReader class from Visual
Studio 2019

Figure 7-12.  Partial screenshot of IDataReader interface from Visual Studio 2019

Chapter 7 Database Programming

297

In demonstration 1, you see the Close() and Read() methods. The Close() method

closes the DataReader object and the Read() method helps the DataReader object

advance to the next record, if possible.

IRecord methods are not used in the upcoming demonstrations, but I’m including a

Visual Studio screenshot that can help you in future implementations. Figure 7-13 shows

the summary of the IDataRecord interface.

Figure 7-13.  Partial screenshot of IDataRecord interface from Visual Studio 2019

Chapter 7 Database Programming

298

�Implementing Connection-Oriented Architecture
Now you are ready to implement a connection-oriented model. To connect to a MySQL

database using a C# application, you need to have a MySqlConnection object and a

connection string. A connection string may contain several key-value pairs, separated

by semicolons. In each key/value pair, the option name and its corresponding value are

joined by an equals sign. In the next demonstration, you see the following line of code.

connectMe = "server=localhost;database=test;username=root;password=admin";

mySqlConnection = new MySqlConnection(connectMe);

mySqlConnection is an instance of MySqlConnection. This line simply states that

I’m going to use a MySqlConnection object, which is configured to connect to a MySQL

server at the localhost (the server). The database name is test, the username is

root, and the password is admin.

In demonstration 1, inside Main(), you see the presence of the following three

methods.

// Open the database connection i.e. connect to a MySQL database.

ConnectToMySqlDatabase();

// Display details of Employee table.

DisplayRecordsFromEmployeeTable();

// Close the database connection.

CloseDatabaseConnection();

From the names of these methods and supporting comments, it’s easy to assume

that I’m opening a connection to the MySQL database using a C# application, then

I’m retrieving information from a table called Employee, and finally, I’m closing the

connection. In this example, all the methods are surrounded by try-catch blocks. It’s a

recommended practice. Once you encounter an exception, this structure can help you

analyze the situation better.

The Open() and Close() methods are used to open and close a connection in this

program. The details of the Open() method in the MySqlConnection class show the

following.

public override void Open();

Chapter 7 Database Programming

299

This simply says that the vendor has overridden the Open() method of DbConnection,

in which Open() was declared as an abstract method, as follows.

//

// Summary:

// �When overridden in a derived class, opens a database connection with

// the settings specified by the System.Data.Common.DbConnection.

// ConnectionString.public abstract void Open();

The Close() method is also overridden in the MySqlConnection class, but it closes a

database connection.

Inside the DisplayRecordsFromEmployeeTable() method, you see the MySqlCommand

object and the ExecuteReader() method.

mySqlDataReader.Close(); closes the DataReader object when it finishes reading

all the records in the Employee table.

In many cases, you see a Windows Forms application for similar programs. When

you use Windows Forms (WPF, ASP.NET, UWP, etc.), you get a better layout, and you can

beautify the work by using various controls. But those beautifications are not of interest

in this chapter. For almost all the programs in this book, I used console applications, and

I maintain the same here.

�Demonstration 1
This is the complete demonstration.

using System;

using MySql.Data.MySqlClient;

namespace ConnectingDatabase

{

 class Program

 {

 static string connectMe = String.Empty;

 static MySqlConnection mySqlConnection = null;

 static MySqlCommand mySqlCommand = null;

 static MySqlDataReader mySqlDataReader = null;

 static void Main(string[] args)

Chapter 7 Database Programming

300

 {

 �Console.WriteLine("∗∗∗Demonstration-1.Connecting and retrieving
details from a MySQL database table.∗∗∗");

 try

 {

 �/∗ Open the database connection i.e. connect to a MySQL
database.∗/

 ConnectToMySqlDatabase();

 // Display details of Employee table.

 DisplayRecordsFromEmployeeTable();

 // Close the database connection.

 CloseDatabaseConnection();

 }

 catch (Exception ex)

 {

 �Console.WriteLine("Caught exception.Here is the problem

details.");

 Console.WriteLine(ex.Message);

 }

 Console.ReadKey();

 }

 private static void DisplayRecordsFromEmployeeTable()

 {

 try

 {

 string sqlQuery = "select ∗ from Employee ;";
 mySqlCommand = new MySqlCommand(sqlQuery,mySqlConnection);

 mySqlDataReader = mySqlCommand.ExecuteReader();

 �Console.WriteLine("EmployeeId\t" + "EmployeeName\t" +

"Age\t" + "Salary");

 �Console.WriteLine("_____________________________________");

 while (mySqlDataReader.Read())

 {

 �Console.WriteLine(mySqlDataReader["EmpId"]

+ "\t\t" + mySqlDataReader["Name"] +

Chapter 7 Database Programming

301

"\t\t" + mySqlDataReader["Age"] + "\t" +

mySqlDataReader["Salary"]);

 }

 mySqlDataReader.Close();

 }

 catch (MySqlException ex)

 {

 �Console.WriteLine("Cannot show the records.Here is the

problem details.");

 Console.WriteLine(ex.Message);

 }

 }

 private static void ConnectToMySqlDatabase()

 {

 try

 {

 �connectMe = "server=localhost;database=test;username=root;

password=admin";

 mySqlConnection = new MySqlConnection(connectMe);

 mySqlConnection.Open();

 Console.WriteLine("Connection to MySQL successful.");

 }

 catch (MySqlException ex)

 {

 �Console.WriteLine("Could not connect to the database.Here

is the problem details.");

 Console.WriteLine(ex.Message);

 }

 }

 private static void CloseDatabaseConnection()

 {

Chapter 7 Database Programming

302

 try

 {

 mySqlConnection.Close();

 }

 catch (MySqlException ex)

 {

 �Console.WriteLine("Could not close the connection.Here is

the problem details.");

 Console.WriteLine(ex.Message);

 }

 }

 }

}

�Output

This is the output.

∗∗∗Demonstration-1.Connecting and retrieving details from a MySQL database
table.∗∗∗
Connection to MySQL successful.

EmployeeId EmployeeName Age Salary

1 Amit 25 1200.5

2 Sam 23 1000.25

3 Bob 30 1500

�Analysis

At first, the connection is established between the C# application and the MySQL

database; and then information from the Employee table could be retrieved. Since it is a

connection-oriented architecture, after you fetch records from the database, you cannot

close the connection. To test this, let’s modify the following block of code and assume

that you invoke the CloseDatabaseConnection() method, as follows.

while (mySqlDataReader.Read())

{

Chapter 7 Database Programming

303

 �Console.WriteLine(mySqlDataReader["EmpId"] + "\t\t" +

mySqlDataReader["Name"] + "\t\t" + mySqlDataReader["Age"] + "\t" +

mySqlDataReader["Salary"]);

 // Closing the connection

 CloseDatabaseConnection();

}

If you execute the program, you get the following output.

∗∗∗Demonstration-1.Connecting and retrieving details from a MySQL database
table.∗∗∗
Connection to MySQL successful.

EmployeeId EmployeeName Age Salary

1 Amit 25 1200.5

Cannot show the records. Here is the problem details.

Invalid attempt to Read when reader is closed.

In demonstration 3, you learn how to continue your work after the connection is

closed.

�Demonstration 2
Demonstration 1 showed you how to establish a connection, close a connection, and

retrieve information from a table in a database. This demonstration introduces three

more methods: one to insert a record in the table, one to delete a record from the table,

and one to update the table. They are named InsertNewRecordIntoEmployeeTable(),

DeleteRecordFromEmployeeTable(), and UpdateExistingRecordIntoEmployeeTable(),

respectively.

The program is straightforward, but I want highlight the following points.

•	 Once the job is done, each method invokes the

DisplayRecordsFromEmployeeTable() method to show the current

status of the table.

Chapter 7 Database Programming

304

•	 When deleting a record, you saw a way to accept user-provided input

from the keyboard. You can refer to the following lines of code in a

similar context:

mySqlCmd = new MySqlCommand("Delete from employee where

name=@NameToBeDeleted", mySqlConnection);

mySqlCmd.Parameters.AddWithValue("@NameToBeDeleted",

empNameToDelete);

mySqlCmd.Prepare();

mySqlCmd.ExecuteNonQuery();

mySqlCmd is an object of MySqlCmd.

•	 Inside the DeleteRecordFromEmployeeTable() method in the

following segment of code, you see a comment prior to the line of code.

/∗ If deletion performs successfully, print this message.∗/
Console.WriteLine("One record is deleted from employee table.");

•	 I used this to indicate that I had not validated the user input. For

simplicity, I did not include the verification, but you may need to

employ similar verification for all the methods. I leave that simple

exercise to you. (Still, in demonstration 4, a simple verification is

employed after performing a delete operation.)

•	 In the UpdateExistingRecordIntoEmployeeTable() method, I

updated Bob’s salary twice. Initially, I changed it to 3000.75, and later

I reset it to the old value: 1500.00. I did this to keep the table’s original

values. In real-world programming, it’s better to make a backup of the

original table. If needed, you can use the backup table. You can make

a backup in various ways. But here we are dealing with a single table

called Employee. So, in this case, you can use the following query to

create another table (let’s say, employee_backup) from an existing

employee table and use it as you wish.

create table employee_backup as (select ∗ from employee);

Chapter 7 Database Programming

305

•	 It is important to note a situation. The prior command copies the

table with data, but it does not copy other database objects, like

primary key, foreign key, indexes, and so forth. (If you do not know

the keys, please refer to Q&A 7.9). To copy data from an existing

table and all the dependent objects, you may use the following two

commands (here I assume that you are creating the Employee table

by copying employee_backup. I’m also checking whether the table

already exists before creating it):

create table if not exists employee like employee_backup;

insert employee select ∗ from employee_backup;

Now go through the complete demonstration.

using System;

using MySql.Data.MySqlClient;

namespace ExercisingSqlCommands

{

 class Program

 {

 static string connectMe = String.Empty;

 static MySqlConnection mySqlConnection = null;

 static MySqlDataReader mySqlDataReader = null;

 static MySqlCommand mySqlCommand = null;

 static void Main(string[] args)

 {

 �Console.WriteLine("∗∗∗Demonstration-2.Connecting and retrieving
details from a MySQL database table.∗∗∗");

 try

 {

 �/∗ Open the database connection i.e. connect to a MySQL
database.∗/

 ConnectToMySqlDatabase();

 // Display details of Employee table.

 DisplayRecordsFromEmployeeTable();

Chapter 7 Database Programming

306

 #region insert and delete a record

 // Insert a new record in Employee table.

 InsertNewRecordIntoEmployeeTable();

 // Delete a record from the Employee table.

 DeleteRecordFromEmployeeTable();

 #endregion

 #region Update and reset a record

 �/∗
 �First updating a record and then resetting the value. So,

basically there are two updates.

∗/
 UpdateExistingRecordIntoEmployeeTable();

 #endregion

 //Close the database connection.

 CloseDatabaseConnection();

 }

 catch (Exception ex)

 {

 �Console.WriteLine("Caught exception.Here is the problem

details.");

 Console.WriteLine(ex.Message);

 }

 Console.ReadKey();

 }

 private static void UpdateExistingRecordIntoEmployeeTable()

 {

 try

 {

 Console.WriteLine("Updating Bob's salary to 3000.75");

 �mySqlCommand = new MySqlCommand("update Employee set

Salary=3000.75 where name='Bob';", mySqlConnection);

 mySqlCommand.ExecuteNonQuery();

 // If update performs successfully , print this message.

Chapter 7 Database Programming

307

 �Console.WriteLine("One record is updated in employee

table.");

 Console.WriteLine("Here is the current table:");

 DisplayRecordsFromEmployeeTable();

 Console.WriteLine("Now resetting Bob's salary to 1500.00");

 �mySqlCommand = new MySqlCommand("update Employee set

Salary=1500.00 where name='Bob';", mySqlConnection);

 mySqlCommand.ExecuteNonQuery();

 // If update performs successfully , print this message.
 �Console.WriteLine("One record is updated in employee

table.");

 Console.WriteLine("Here is the current table:");

 DisplayRecordsFromEmployeeTable();

 }

 catch (MySqlException ex)

 {

 �Console.WriteLine("Cannot update the record.Here is the

problem details.");

 Console.WriteLine(ex.Message);

 }

 }

 private static void DeleteRecordFromEmployeeTable()

 {

 try

 {

 �Console.WriteLine("Enter the employee name to be deleted

from Employee table.");

 string empNameToDelete = Console.ReadLine();

 �/∗ Additional validation required to confirm the employee
name exists in the table.

 Or, whether its a valid entry or not.

 ∗/

Chapter 7 Database Programming

308

 �mySqlCmd = new MySqlCommand("Delete from employee where

name=@NameToBeDeleted", mySqlConnection);

 �mySqlCmd.Parameters.AddWithValue("@NameToBeDeleted",

empNameToDelete);

 mySqlCmd.Prepare();

 mySqlCmd.ExecuteNonQuery();

 �/* If deletion performs successfully , print this message.*/

 �Console.WriteLine("One record is deleted from employee

table.");

 Console.WriteLine("Here is the current table:");

 DisplayRecordsFromEmployeeTable();

 }

 catch (MySqlException ex)

 {

 �Console.WriteLine("Cannot delete the record.Here is the

problem details.");

 Console.WriteLine(ex.Message);

 }

 }

 private static void InsertNewRecordIntoEmployeeTable()

 {

 try

 {

 �mySqlCommand = new MySqlCommand("insert into Employee

values(4,'John',27,975);", mySqlConnection);

 mySqlCommand.ExecuteNonQuery();

 Console.WriteLine("New record insertion successful.");

 Console.WriteLine("Here is the current table:");

 DisplayRecordsFromEmployeeTable();

 }

 catch (MySqlException ex)

Chapter 7 Database Programming

309

 {

 �Console.WriteLine("Cannot insert the new record.Here is the

problem details.");

 Console.WriteLine(ex.Message);

 }

 }

 private static void DisplayRecordsFromEmployeeTable()

 {

 try

 {

 string sqlQuery = "select ∗ from Employee ;";
 mySqlCommand = new MySqlCommand(sqlQuery, mySqlConnection);

 mySqlDataReader = mySqlCommand.ExecuteReader();

 �Console.WriteLine("EmployeeId\t" + "EmployeeName\t" +

"Age\t" + "Salary");

 Console.WriteLine("_____________________________________");

 while (mySqlDataReader.Read())

 {

 �Console.WriteLine(mySqlDataReader["EmpId"]

+ "\t\t" + mySqlDataReader["Name"] +

"\t\t" + mySqlDataReader["Age"] + "\t" +

mySqlDataReader["Salary"]);

 }

 mySqlDataReader.Close();

 }

 catch (MySqlException ex)

 {

 �Console.WriteLine("Cannot show the records.Here is the

problem details.");

 Console.WriteLine(ex.Message);

 }

 }

 private static void ConnectToMySqlDatabase()

Chapter 7 Database Programming

310

 {

 try

 {

 �connectMe = "server=localhost;database=test;username=root;

password=admin";

 mySqlConnection = new MySqlConnection(connectMe);

 mySqlConnection.Open();

 Console.WriteLine("Connection to MySQL successful.");

 }

 catch (MySqlException ex)

 {

 �Console.WriteLine("Could not connect to the database.Here

is the problem details.");

 Console.WriteLine(ex.Message);

 }

 }

 private static void CloseDatabaseConnection()

 {

 try

 {

 mySqlConnection.Close();

 }

 catch (MySqlException ex)

 {

 �Console.WriteLine("Could not close the connection.Here is

the problem details.");

 Console.WriteLine(ex.Message);

 }

 }

 }

}

Chapter 7 Database Programming

311

�Output

Here is the output.

∗∗∗Demonstration-2.Connecting and retrieving details from a MySQL database
table.∗∗∗
Connection to MySQL successful.

EmployeeId EmployeeName Age Salary

1 Amit 25 1200.5

2 Sam 23 1000.25

3 Bob 30 1500

New record insertion successful.

Here is the current table:

EmployeeId EmployeeName Age Salary

1 Amit 25 1200.5

2 Sam 23 1000.25

3 Bob 30 1500

4 John 27 975

Enter the employee name to be deleted from Employee table.

John

One record is deleted from employee table.

Here is the current table:

EmployeeId EmployeeName Age Salary

1 Amit 25 1200.5

2 Sam 23 1000.25

3 Bob 30 1500

Updating Bob's salary to 3000.75

One record is updated in employee table.

Here is the current table:

EmployeeId EmployeeName Age Salary

1 Amit 25 1200.5

2 Sam 23 1000.25

3 Bob 30 3000.75

Chapter 7 Database Programming

312

Now resetting Bob's salary to 1500.00

One record is updated in employee table.

Here is the current table:

EmployeeId EmployeeName Age Salary

1 Amit 25 1200.5

2 Sam 23 1000.25

3 Bob 30 1500

�Implementing Disconnected Data Architecture
Now it’s time to show you a demo of a disconnected data architecture (also known

as a disconnected layer). Demonstration 3 is made for this purpose. Here, you see the

DataTable, DataRow, and DataSet classes. To get these classes, you need to include the

following namespace.

using System.Data;

System.Data is at the core of the ADO.NET assembly. This namespace contains other

important classes, like DataColumn, DataRelation, and Constraint (it is an abstract

class) as well. The following is a brief description of each of them.

•	 DataSet: It is your local buffer (in-memory cache), which is a

collection of tables or record sets.

•	 DataTable: It contains data in tabular form using rows and columns.

•	 DataRow: It represents a single row (i.e., record) in a DataTable.

•	 DataColumn: It represents a column in a DataTable.

•	 DataRelation: It represents the parent/child relationship between

two DataTable objects.

•	 Constraint: It represents the limitations that are enforced on one or

more DataColumn objects.

In this demonstration, you see the following lines of code.

static MySqlDataAdapter mySqlDataAdapter = null;

static MySqlCommandBuilder mySqlCommandBuilder = null;

So, let’s look at them.

Chapter 7 Database Programming

313

�MySqlDataAdapter
MySqlDataAdapter is a sealed class, so you cannot make another class that inherits from

it. The class summary states that it represents a set of data commands and a database

connection that you use to fill a dataset and update a MySQL database. Let’s see what

VS2019 says. Figure 7-14 is a partial screenshot of the MySqlDataAdapter class.

Figure 7-14 tells you that MySqlDataAdapter inherits from DbAdpater,

IDbDataAdapter, and IDataAdapter. The naming convention indicates that

IDbDataAdapter and IDataAdapter are two interfaces. Let’s look at the summaries of

these interfaces. Figure 7-15 is a screenshot of IDbDataAdapter.

Figure 7-14.  Partial screenshot of MySqlDataAdapter class from Visual
Studio 2019

Figure 7-15.  Partial screenshot of IDbDataAdapter interface from Visual
Studio 2019

Chapter 7 Database Programming

314

You can see that IDbDataAdapter has four properties, which are used to select,

insert, update, or delete records from a database. Figure 7-15 shows that IDataAdapter is

the parent of IDbDataAdapter.

Figure 7-16 is a screenshot from VS2019; it shows a summary of IDataAdapter.

In this interface, you can see properties as well as methods. The Fill, FillSchema,

and Update methods are very common when you implement a disconnected data

architecture. In demonstration 3, you see these methods. The following segment of code

from demonstration 3 shows the Fill and FillSchema methods.

// Retrieve details from 'Employee' table

mySqlDataAdapter.FillSchema(localDataSet, SchemaType.Source, "Employee");

mySqlDataAdapter.Fill(localDataSet, "Employee");

Prior to using the Fill() method, you may need to call FillSchema(), which allows

you to match the schema of the source table. It is important when you insert a new

record offline in your DataTable.

In many applications, you may only see the Fill() method. In those applications,

the Fill() method is the most important method because it is the step where the

DataAdapter object connects to a physical database and fetches the query result (in this

example, we called FillSchema() prior to Fill()).

Figure 7-16.  Partial screenshot of IDataAdapter interface from Visual
Studio 2019

Chapter 7 Database Programming

315

In this interface, you can see the TableMappings property, which maps database

column names (from a source table) to more user-friendly display names (to a dataset

table).

Lastly, DbDataAdapter is an abstract class that inherits from the previous two

interfaces. The Method summary states that this class aids the implementation of the

IDbDataAdapter interface. Figure 7-17 is a partial screenshot from Visual Studio IDE for

the DbDataAdapter class.

�MySqlCommandBuilder
MySqlCommandBuilder is a sealed class that inherits from DbCommandBuilder. The class

summary states that it automatically generates single-table commands to reconcile

changes made to a DataSet with the associated MySQL database.

Figure 7-18 is a partial screenshot of MySqlCommandBuilder from Visual Studio IDE.

Figure 7-17.  Partial screenshot of DbDataAdapter class from Visual Studio 2019

Chapter 7 Database Programming

316

In demonstration 3, you see the following lines when you want to reflect your local

changes to the actual database.

mySqlCommandBuilder = new MySqlCommandBuilder(mySqlDataAdapter);

Console.WriteLine("Syncing with remote database table");

mySqlDataAdapter.Update(localDataSet, "Employee");

Here, mySqlDataAdapter is an object of MySqlDataAdapter.

�Demonstration 3
This demonstration displays the records from the Employee table, inserts a new

record, and then deletes a record. To easily understand the operations, the methods

are named DisplayRecordsFromEmployeeTable, InsertRecordIntoEmployeeTable,

and DeleteRecordIntoEmployeeTable, respectively. If you go through the class

descriptions and the discussions prior to this demonstration, you should have no trouble

understanding the code—apart from the following segment of code.

Figure 7-18.  Partial screenshot of MySqlCommandBuilder class from Visual
Studio 2019

Chapter 7 Database Programming

317

// Creates a new record with the same schema as the table

DataRow currentRow = localDataTable.NewRow();

currentRow["EmpId"] = 4;

currentRow["Name"] = "Jack";

currentRow["Age"] = 40;

currentRow["Salary"] = 2500.75;

// Add this record to local table

localDataTable.Rows.Add(currentRow);

Yes, you guessed it! The supportive comments tell you that this is a way to add a

record to a table. There is an alternative approach that can do the same, however. For

example, the following code segment also works in this context.

// Also works

currentRow[0] = 4;

currentRow[1] = "Jack";

currentRow[2] = 40;

currentRow[3] = 2500.75;

You can choose your preferred approach. If you want to do less typing, choose the

second approach. If you want better readability, choose the first one.

Now go through the complete demonstration and the corresponding output.

using System;

using System.Data;

using MySql.Data.MySqlClient;

namespace ConnectingDatabase

{

 class Program

 {

 static string connectMe = String.Empty;

 static string sqlCommand = String.Empty;

 static MySqlDataAdapter mySqlDataAdapter = null;

 static MySqlCommandBuilder mySqlCommandBuilder = null;

 static DataSet localDataSet = null;

Chapter 7 Database Programming

318

 static void Main(string[] args)

 {

 �Console.WriteLine("∗∗∗Connecting and retrieving details from a
MySQL database table.∗∗∗");

 �Console.WriteLine("∗∗∗Testing the disconnected architecture
now.∗∗∗");

 try

 {

 // Get a local copy of Employee table

 DataTable localDataTable = CreateLocalTable();

 //Display from the client-side(local)table.

 DisplayRecordsFromEmployeeTable(localDataTable);

 �/∗ Insert a new record into local table and sync it with
the database∗/

 InsertRecordIntoEmployeeTable(localDataTable);

 �Console.WriteLine("∗∗After Inserting a record into the
Employee table...∗∗");

 DisplayRecordsFromEmployeeTable(localDataTable);

 �/∗ Delete an existing record from local table and sync it
with the database. ∗/

 DeleteRecordIntoEmployeeTable(localDataTable);

 �Console.WriteLine("∗∗After deleting a record into the
Employee table...∗∗");

 DisplayRecordsFromEmployeeTable(localDataTable);

 }

 catch (Exception ex)

 {

 �Console.WriteLine("Caught exception.Here is the problem

details.");

 Console.WriteLine(ex.Message);

 }

 Console.ReadKey();

 }

Chapter 7 Database Programming

319

 �private static void DeleteRecordIntoEmployeeTable(DataTable

localDataTable)

 {

 try

 {

 Console.WriteLine("Now deleting the record for EmpId4.");

 DataTable dataTable = localDataSet.Tables["Employee"];

 // Deleting a record

 DataRow deleteRow = dataTable.Rows.Find(4);

 deleteRow.Delete();

 //If deletion performs successfully, print this message.

 �Console.WriteLine("Successfully deleted the record from

local buffer where EmpId was 4.");

 // Apply the change to MySQL

 �mySqlCommandBuilder = new MySqlCommandBuilder(mySqlData

Adapter);

 Console.WriteLine("Syncing with remote database table");

 mySqlDataAdapter.Update(localDataSet, "Employee");

 �Console.WriteLine("Successfullly updated the remote

table.\n");

 }

 catch (MySqlException ex)

 {

 �Console.WriteLine("Could not delete the record.Here is the

problem details.");

 Console.WriteLine(ex.Message);

 }

 }

Chapter 7 Database Programming

320

 �private static void InsertRecordIntoEmployeeTable(DataTable

localDataTable)

 {

 try

 {

 �/∗ Creates a new record with the same schema as the
table.∗/

 DataRow currentRow = localDataTable.NewRow();

 currentRow["EmpId"] = 4;

 currentRow["Name"] = "Jack";

 currentRow["Age"] = 40;

 currentRow["Salary"] = 2500.75;

 // Add this record to local table

 localDataTable.Rows.Add(currentRow);

 �Console.WriteLine("Successfully added a record into local

buffer.");

 int noOfRecords = localDataTable.Rows.Count;

 �Console.WriteLine("Local table currently has {0} number of

records.", noOfRecords);

 // Apply the change to MySQL

 �mySqlCommandBuilder = new MySqlCommandBuilder(mySqlData

Adapter);

 Console.WriteLine("Syncing with remote database table");

 mySqlDataAdapter.Update(localDataSet, "Employee");

 �Console.WriteLine("Successfullly updated the remote

table");

 }

 catch (MySqlException ex)

 {

 �Console.WriteLine("Could not insert the record.Here is the

problem details.");

 Console.WriteLine(ex.Message);

 }

 }

Chapter 7 Database Programming

321

 �private static void DisplayRecordsFromEmployeeTable(DataTable

localDataTable)

 {

 try

 {

 int noOfRecords = localDataTable.Rows.Count;

 Console.WriteLine("Here is the table for you:");

 �Console.WriteLine("EmployeeId\t" + "EmployeeName\t" +

"Age\t" + "Salary");

 Console.WriteLine("_____________________________________");

 �for (int currentRow = 0; currentRow < noOfRecords;

currentRow++)

 {

 Console.WriteLine(

 localDataTable.Rows[currentRow]["EmpId"] + "\t\t" +

 localDataTable.Rows[currentRow]["Name"] + "\t\t" +

 localDataTable.Rows[currentRow]["Age"] + "\t" +

 localDataTable.Rows[currentRow]["Salary"]

);

 }

 }

 catch (MySqlException ex)

 {

 �Console.WriteLine("Cannot show the records.Here is the

problem details.");

 Console.WriteLine(ex.Message);

 }

 }

 private static DataTable CreateLocalTable()

 {

 �connectMe = "datasource=localhost;port=3306;database=test;

username=root;password=admin";

 sqlCommand = "select ∗ from Employee";
 mySqlDataAdapter = new MySqlDataAdapter(sqlCommand, connectMe);

 // Also works

Chapter 7 Database Programming

322

 //mySqlConnection = new MySqlConnection(connectMe);

 �//mySqlDataAdapter = new MySqlDataAdapter(sqlCommand,

mySqlConnection);

 // Create a DataSet instance

 �/∗ I recommend you to use the following overloaded constructor
of DataSet to use.∗/

 localDataSet = new DataSet("LocalDataSet");

 // Retrieve details from 'Employee' table

 �mySqlDataAdapter.FillSchema(localDataSet, SchemaType.Source,

"Employee");

 mySqlDataAdapter.Fill(localDataSet, "Employee");

 // Create new instance of DataTable

 DataTable dataTable = localDataSet.Tables["Employee"];

 int noOfRecords = dataTable.Rows.Count;

 �Console.WriteLine("Created a local DataTable.Total number of

records in this table is:{0}", noOfRecords);

 return dataTable;

 }

 }

}

�Output

This is the output.

∗∗∗Connecting and retrieving details from a MySQL database table.∗∗∗
∗∗∗Testing the disconnected architecture now.∗∗∗
Created a local DataTable.Total number of records in this table is:3

Here is the table for you:

EmployeeId EmployeeName Age Salary

1 Amit 25 1200.5

2 Sam 23 1000.25

3 Bob 30 1500

Successfully added a record into local buffer.

Local table currently has 4 number of records.

Chapter 7 Database Programming

323

Syncing with remote database table

Successfullly updated the remote table

∗∗After Inserting a record into the Employee table...∗∗
Here is the table for you:

EmployeeId EmployeeName Age Salary

1 Amit 25 1200.5

2 Sam 23 1000.25

3 Bob 30 1500

4 Jack 40 2500.75

Now deleting the record for EmpId4.

Successfully deleted the record from local buffer where EmpId was 4.

Syncing with remote database table

Successfullly updated the remote table.

∗∗After deleting a record into the Employee table...∗∗
Here is the table for you:

EmployeeId EmployeeName Age Salary

1 Amit 25 1200.5

2 Sam 23 1000.25

3 Bob 30 1500

�Programming with Stored Procedures
You have seen the use of SQL statements inside all the previous programs. This is fine

when you start learning database programming. But this approach has a potential

drawback. Using these plain SQL statements, you are exposing the database schema

(design) inside the code, which can be changed. This is why in real-world applications,

you normally see the use of stored procedures rather than plain SQL statements.

Stored procedures have the following characteristics.

•	 They are precompiled executable objects.

•	 You can use one or multiple SQL statements inside a stored

procedure.

Chapter 7 Database Programming

324

•	 Any complex SQL statements can be replaced with a stored

procedure.

•	 They can accept input and return output.

It is already said that I’m using simple SQL statements to demonstrate the idea of

database programming in this chapter and if you are new to SQL, I recommended you

doing exercises with SQL statements in your preferred database to be familiar with SQL

statements. I suggest the same with stored procedures.

Now I’ll show you how to replace SQL statements with simple stored procedures.

For demonstration purposes, let’s go back to demonstration 1 or demonstration 2.

There you saw the use of select, insert, update, and delete SQL statements. In the next

demonstration, I replace the select, insert, and delete statements with stored procedures.

The remaining case, update, is very easy. I leave that exercise to you.

Now, let’s start.

Note A ppendix A includes the complete commands needed to create these
stored procedures in the MySQL database. If needed, you can refer to them.

�Stored Procedure to Select Records
In my database, I created the following stored procedure, called GetAllEmployees, to

replace the select query in demonstration 1 or demonstration 2.

DELIMITER $

CREATE PROCEDURE GetAllEmployees()

 BEGIN

 SELECT ∗ FROM EMPLOYEE;
 END $

DELIMITER ;

�Stored Procedure to Insert One Record
In my database, I created the following stored procedure, called InsertOneNewRecord, to

replace the insert query in demonstration 2. This stored procedure inserts a record with

predefined values.

Chapter 7 Database Programming

325

DELIMITER $

CREATE PROCEDURE InsertOneNewRecord()

 BEGIN

 insert into Employee values(4,'John',27,975);

 END $

DELIMITER ;

�Stored Procedure to Delete One Record
In my database, I created the following stored procedure, called DeleteOneRecord, to

replace the delete query in demonstration 2. This stored procedure deletes a record

based on the user’s input.

DELIMITER //

CREATE PROCEDURE DeleteOneRecord(

 IN NameToBeDeleted varchar(10)

)

BEGIN

 Delete from employee where Name=NameToBeDeleted;

END //

DELIMITER;

Note  You can choose the delimiter. Note that in the first two stored procedures, I
used $ as a delimiter, but in the last one, I used //.

�One Simple Verification
For simplicity and to reduce the code size, I told you to implement your own

verification method after different operations. In this demonstration, I show you

a simple verification technique using the following code segment (inside the

DeleteRecordFromEmployeeTable() method).

Chapter 7 Database Programming

326

if (mySqlCommand.ExecuteNonQuery() == 1)

{

 // If deletion performs successfully , print this message.

 Console.WriteLine("One record is deleted from employee table.");

}

else

{

 Console.WriteLine("Couldn't delete the record from employee table.");

}

If you see ExecuteNonQuery() method description in Visual Studio IDE, you get the

following information.

//

// Summary:

// Executes a SQL statement against the connection and returns the

// number of rows affected.

//

// Returns:

// Number of rows affected

//

// Remarks:

// You can use ExecuteNonQuery to perform any type of database

// operation, however any resultsets returned will not be available.

// Any output parameters used in calling a stored procedure will be

// populated with data and can be retrieved after execution is

// complete. For UPDATE, INSERT, and DELETE statements, the return

// value is the number of rows affected by the command. For all other

// types of statements,the return value is -1.

public override int ExecuteNonQuery();

This description is self-explanatory. You can easily use this method for your own

verification purposes.

Chapter 7 Database Programming

327

�Demonstration 4
Here is the complete demonstration. The method names and operations are similar to

demonstration 2, but this time, simple stored procedures are used. I suggest that you

refer to the associated comments to get a better understanding.

using System;

using System.Data;

using MySql.Data.MySqlClient;

namespace UsingStoredProcedures

{

 class Program

 {

 static string connectMe = String.Empty;

 static MySqlConnection mySqlConnection = null;

 static MySqlCommand mySqlCommand = null;

 static MySqlDataReader mySqlDataReader = null;

 static void Main(string[] args)

 {

 �Console.WriteLine("∗∗∗Demonstration-4.Using stored procedure
now.∗∗∗");

 try

 {

 �/∗ Open the database connection i.e. connect to a MySQL
database∗/

 ConnectToMySqlDatabase();

 // Display details of Employee table.

 DisplayRecordsFromEmployeeTable();

 // Insert a new record in Employee table.

 InsertNewRecordIntoEmployeeTable();

 // Delete a record from the Employee table.

 DeleteRecordFromEmployeeTable();

 // Close the database connection.

 CloseDatabaseConnection();

 }

Chapter 7 Database Programming

328

 catch (Exception ex)

 {

 �Console.WriteLine("Caught exception.Here is the problem

details.");

 Console.WriteLine(ex.Message);

 }

 Console.ReadKey();

 }

 private static void DisplayRecordsFromEmployeeTable()

 {

 try

 {

 #region old code(which you saw in previous demonstrations)

 //string sqlQuery = "select ∗ from Employee ;";
 �//mySqlCommand = new MySqlCommand(sqlQuery,

mySqlConnection);

 #endregion

 #region new code

 //The following �lines are moved to a common place

 //mySqlCommand = new MySqlCommand();

 //mySqlCommand.Connection = mySqlConnection;

 �mySqlCommand.CommandText = "SelectAllEmployees";//Using

Stored Procedure

 mySqlCommand.CommandType = CommandType.StoredProcedure;

 #endregion

 mySqlDataReader = mySqlCommand.ExecuteReader();

 �Console.WriteLine("EmployeeId\t" + "EmployeeName\t" +

"Age\t" + "Salary");

 Console.WriteLine("_____________________________________");

 while (mySqlDataReader.Read())

 {

 �Console.WriteLine(mySqlDataReader["EmpId"] +

"\t\t" + mySqlDataReader["Name"] +

"\t\t" + mySqlDataReader["Age"] + "\t" +

mySqlDataReader["Salary"]);

Chapter 7 Database Programming

329

 }

 mySqlDataReader.Close();

 }

 catch (MySqlException ex)

 {

 �Console.WriteLine("Cannot show the records.Here is the

problem details.");

 Console.WriteLine(ex.Message);

 }

 }

 private static void InsertNewRecordIntoEmployeeTable()

 {

 try

 {

 // Old code (you saw in demonstration 2)

 �//mySqlCommand = new MySqlCommand("insert into Employee

values(4,'John',27,975);", mySqlConnection);

 #region new code

 //The following lines are moved to a common place

 //mySqlCommand = new MySqlCommand();

 //mySqlCommand.Connection = mySqlConnection;

 �mySqlCommand.CommandText = "InsertOneNewrecord";

// Using Stored Procedure

 mySqlCommand.CommandType = CommandType.StoredProcedure;

 #endregion

 mySqlCommand.ExecuteNonQuery();

 Console.WriteLine("New record insertion successful.");

 Console.WriteLine("Here is the current table:");

 DisplayRecordsFromEmployeeTable();

 }

 catch (MySqlException ex)

 {

 �Console.WriteLine("Cannot insert the new record.Here is the

problem details.");

Chapter 7 Database Programming

330

 Console.WriteLine(ex.Message);

 }

 }

 private static void DeleteRecordFromEmployeeTable()

 {

 try

 {

 �Console.WriteLine("Enter the employee name to be deleted

from Employee table.");

 string empNameToDelete = Console.ReadLine();

 #region new code

 �MySqlParameter deleteParameter = new MySqlParameter("NameTo

BeDeleted", MySqlDbType.VarChar);

 mySqlCommand.CommandType = CommandType.StoredProcedure;

 mySqlCommand.CommandText = "DeleteOneRecord";

 // Using Stored Procedure

 �/∗ The following code segment will also work but in that
case ,you have to add the value to the parameter first.∗/

 //deleteParameter.Value = empNameToDelete;

 //mySqlCommand.Parameters.Add(deleteParameter);

 �mySqlCommand.Parameters.AddWithValue("NameToBeDeleted",

empNameToDelete);

 #endregion

 if (mySqlCommand.ExecuteNonQuery()==1)

 {

 // If deletion performs successfully , print this message.

 �Console.WriteLine("One record is deleted from employee

table.");

 }

 else

 {

 �Console.WriteLine("Couldn't delete the record from

employee table.");

 }

Chapter 7 Database Programming

331

 Console.WriteLine("Here is the current table:");

 DisplayRecordsFromEmployeeTable();

 }

 catch (MySqlException ex)

 {

 �Console.WriteLine("Cannot delete the record.Here is the

problem details.");

 Console.WriteLine(ex.Message);

 }

 }

 private static void ConnectToMySqlDatabase()

 {

 try

 {

 // The following will also work

 �//connectMe = "datasource=localhost;port=3306;database=test;

username=root;password=admin";

 �connectMe = "server=localhost;database=test;username=root;

password=admin";

 mySqlConnection = new MySqlConnection(connectMe);

 mySqlConnection.Open();

 Console.WriteLine("Connection to MySQL successful.");

 // Initializing Command here to remove duplicate codes.
 mySqlCommand = new MySqlCommand();

 mySqlCommand.Connection = mySqlConnection;

 }

 catch (MySqlException ex)

 {

 �Console.WriteLine("Could not connect to the database.Here

is the problem details.");

 Console.WriteLine(ex.Message);

 }

 }

Chapter 7 Database Programming

332

 private static void CloseDatabaseConnection()

 {

 try

 {

 mySqlConnection.Close();

 }

 catch (MySqlException ex)

 {

 �Console.WriteLine("Could not close the connection.Here is

the problem details.");

 Console.WriteLine(ex.Message);

 }

 }

 }

}

�Output

This is the output.

∗∗∗Demonstration-4.Using stored procedure now.∗∗∗
Connection to MySQL successful.

EmployeeId EmployeeName Age Salary

1 Amit 25 1200.5

2 Sam 23 1000.25

3 Bob 30 1500

New record insertion successful.

Here is the current table:

EmployeeId EmployeeName Age Salary

1 Amit 25 1200.5

2 Sam 23 1000.25

3 Bob 30 1500

4 John 27 975

Enter the employee name to be deleted from Employee table.

Chapter 7 Database Programming

333

John

One record is deleted from employee table.

Here is the current table:

EmployeeId EmployeeName Age Salary

1 Amit 25 1200.5

2 Sam 23 1000.25

3 Bob 30 1500

�Q&A Session
7.1  Instead of giving a single set of objects to communicate with various databases,

why does ADO.NET support different providers to connect to different databases?
Here are some important benefits that you can get by using this approach.

•	 A specific provider can help you directly connect to a specific

database. As a result, you do not need to support any intermediate

layers between the caller and the data store.

•	 A provider has special and unique features for a specific database.

You get the benefit of this specialized support.

7.2  What is the benefit of using a disconnected data architecture in ADO.NET?
In most real-world applications, the required data stays at a remote computer, and

you connect to that computer through a network. In disconnected data architecture,

once you get the DataSet object, the required data stays in your local machine, so

you can access the data quickly. At the same time, since you do not need the Internet

connection to access the local data, you can reduce network traffic. As a result, the

overall performance of your application is enhanced.

Lastly, you can make any change to the local data and do your own experiments. It

is up to you whether you want to reflect those changes in the actual database or not (by

calling the Update() method of the adapter). Doing an experiment on an actual database

is obviously not a good idea.

Chapter 7 Database Programming

334

7.3  In demonstration 3, you called FillSchema() prior to the Fill() method in
the following code segment. Was this necessary?

// Retrieve details from 'Employee' table

mySqlDataAdapter.FillSchema(localDataSet, SchemaType.Source, "Employee");

mySqlDataAdapter.Fill(localDataSet, "Employee");

It’s a better practice. To include the constraints from an existing table, I included

this line of code. In a case like this, you have two options: use the FillSchema method

of the DataAdapter , or set the MissingSchemaAction property of the DataAdapter to

AddWithKey before calling the Fill method. In our example, if FillSchema() is not used,

the line should be commented as follows.

//mySqlDataAdapter.FillSchema(localDataSet, SchemaType.Source, "Employee");

If you run the application again, you get an exception prior to the delete operation

that says that the table doesn’t have a primary key.

If you are interested in learning more about these methods, visit https://

docs.microsoft.com/en-us/dotnet/framework/data/adonet/adding-existing-

constraints-to-a-dataset.

7.4  What is a stored procedure?
If you want to repeat a sequence of tasks, create a stored procedure. It’s a subroutine

(or a subprogram) stored in a database. In our examples, a stored procedure can have a

name, parameters, and SQL statements; it is very similar to a method in C#. The steps

to create a stored procedure can vary across databases. In this chapter, you were shown

three stored procedures in demonstration 4 to serve our needs.

7.5  A stored procedure is similar to a function. Is this correct?
There are some significant differences in stored procedures and functions. For

example, in MySQL, a stored procedure can return one or multiple values, or no values

at all; whereas a function always returns a single value.

7.6  How can I create a function? A simple demo can help me.
This is a SQL query to create a function called AddNumbers:

mysql> create function AddNumbers(firstNumber double,secondNumber

double) returns double deterministic return firstNumber+secondNumber;

Query OK, 0 rows affected (0.45 sec)

The following query confirms the details of the function:

Chapter 7 Database Programming

https://docs.microsoft.com/en-us/dotnet/framework/data/adonet/adding-existing-constraints-to-a-dataset
https://docs.microsoft.com/en-us/dotnet/framework/data/adonet/adding-existing-constraints-to-a-dataset
https://docs.microsoft.com/en-us/dotnet/framework/data/adonet/adding-existing-constraints-to-a-dataset

335

Figure 7-19.  Once the Function called AddNumbers is created in MySQL, the
screenshot is taken from the MySQL command prompt.

mysql> Select Routine_name as "Function Name", routine_Definition as

"Definition", Routine_Schema "Schema", Data_Type as "Types", Created

From Information_Schema.Routines Where Routine_Name='AddNumbers' and

Routine_Type= 'FUNCTION';

Here is an output:

+-----------------+-------------------------+---------+--------+--------------------+

| Function Name | Definition | Schema | Types | CREATED |

+-----------------+---------------------------+---------+--------+---------------------+

| AddNumbers | return firstNumber+

 secondNumber | test | double | 2020-03-17 10:13:20 |

+-----------------+--------------------------+---------+--------+--------------------+

1 row in set (0.00 sec)

Figure 7-19 is a compact view.

Or, you can see all the functions in your current database by using the following

query.

mysql> show function status where db='test';

Now let’s execute the function. A function can be invoked in various ways. Here is a

sample query with output.

mysql> select AddNumbers(25,45) as "Total";

Chapter 7 Database Programming

336

+-------+

| Total |

+-------+

| 70 |

+-------+

1 row in set (0.00 sec)

7.7  I saw the term DDL in the context of SQL in some places. What does it mean?
SQL commands are commonly classified among the following.

•	 DDL (data definition language) statements create or modify a

database object’s structure. You use create, alter, drop, and truncate
statements in this context.

•	 DML (data manipulation language) statements retrieve, insert,

update, or delete records in a database. For example, you use insert,
update, delete, and select statements in this context. Some engineers

prefer to put select statements in a separate category called DQL

(data query Language).

•	 DCL (data control language) statements create various roles and

permissions to control access to a database. For example, you may

use grant and revoke statements in this context.

•	 TCL (transaction control language) statements manage different

transactions that occur in a database. For example, you may use

commit and rollback statements in this context.

7.8  How does ADO.NET differ from ADO?
Please refer to the notes in the “A Brief Talk About ADO.NET” section.

7.8  What is a delimiter? Why is it used?
You need to use a delimiter in MySQL to treat a set of statements (functions, stored

procedures, etc.) as an entire statement. By default, you use the ; delimiter to separate

two statements. But when you need to deal with multiple statements as a whole, you

set your own delimiter temporarily and then reset it to the default ;. You can choose

different delimiters—like // or $ —when you create your own stored procedures.

7.9  You used the terms primary keys and foreign keys. What do you mean?
A primary key (more correctly, a candidate key) is a single field or a combination of

fields used to identify a record correctly. For example, in an organization, two employees

Chapter 7 Database Programming

337

can have same name, but their employee IDs are different. So, instead of choosing

names, you should choose IDs as primary keys. It is important to note that a primary key

not only defines uniqueness, but it also cannot be null. For example, an employee must

have an identification number (ID).

Theoretically, in a table you can have several keys that uniquely identify a record.

These are called candidate keys. Among these candidate keys, you choose only one as

the primary key, and the remaining keys are called alternate keys. For example, assume

that you have a table called StudentTable to maintain different student records. And

in this table, let’s assume that there are columns like StudentName, StudentAddress,

Department, and so forth. Now you may find that both RollNumber and the combination

of StudentName, StudentAddress can uniquely identify a record. So, if you choose

RollNumber as the primary key, the other one (StudentName, StudentAddress), is an

alternate key. When you have multiple columns as a key, those keys are also known

as composite keys. For example, (StudentName, StudentAddress) is an example of a

composite key.

Foreign keys are used to define the relationship between two tables. A foreign key

is a column that is primary key of another table. The table containing the foreign key is

often called as a child table, and the table containing the candidate key is often called the

referenced or parent table. In this context, the MySQL community says: “A foreign key

relationship involves a parent table that holds the initial column values, and a child table

with column values that reference the parent column values. A foreign key constraint is

defined on the child table.” (See https://dev.mysql.com/doc/refman/5.6/en/create-

table-foreign-keys.html).

�Connection Pooling
Let’s finish the chapter with a brief discussion about connection pooling. In this chapter,

the database is stored locally. You may not see the impact of elapsed time to connect the

database, but many real-world applications take a significant amount of time to connect

a database (no matter whether using .NET, Java, etc.).

If there are many connections happening rapidly (for example, a web application),

initializing (or opening) the connections and then closing the connections can slow

down the performance of the application. To overcome this problem, you can use

connection pooling. Connection pools are specific to a given connection. To enable them,

Chapter 7 Database Programming

https://dev.mysql.com/doc/refman/5.6/en/create-table-foreign-keys.html
https://dev.mysql.com/doc/refman/5.6/en/create-table-foreign-keys.html

338

in many applications, you see the presence of “Pooling=true” in the connection string.

(For MySqlConnection, pooling is enabled by default).

When connection pooling is enabled, the provider offers a pool of “connected and

open” connections, which are immediately given to whoever requests a connection. In

this case, the connections seem to be open after invoking the Close() method, which is

an expected behavior. The MySQL community says the following at https://dev.mysql.

com/doc/connector-net/en/connector-net-connections-pooling.html.

The MySQL Connector/NET supports connection pooling for better perfor-
mance and scalability with database-intensive applications. This is enabled
by default. You can turn it off or adjust its performance characteristics using
the connection string options Pooling, Connection Reset, Connection
Lifetime, Cache Server Properties, Max Pool Size and Min Pool Size.

Connection pooling works by keeping the native connection to the server
live when the client disposes of a MySqlConnection. Subsequently, if a new
MySqlConnection object is opened, it is created from the connection pool,
rather than creating a new native connection. This improves performance.

Lastly, the presence of Max Pool Size and Min Pool Size gives hints that the pool

size (of connections) can vary by application.

�Final Words
Those are the fundamentals of database programming.

This is not only the end of the chapter, it is also the end of this book. Congratulations,

you have finished the book! I believe that you’ll find this book useful in the future. Now,

you are ready for advanced programming in C#, and hopefully, you can go further with

upcoming and new concepts in C#.

Until we meet again, enjoy and happy coding! I wish you all the best.

Chapter 7 Database Programming

https://dev.mysql.com/doc/connector-net/en/connector-net-connections-pooling.html
https://dev.mysql.com/doc/connector-net/en/connector-net-connections-pooling.html

339

�Summary
This chapter addressed the following key questions.

•	 What is a database?

•	 What is a DBMS? What are different types of DBMS?

•	 What are some common terms used in RDBMS?

•	 What is SQL?

•	 What is ADO.NET? How does it differ from classical ADO?

•	 How do you connect to MySQL?

•	 How does a C# application talk to a database?

•	 How do you implement a connected layer using a C# application?

•	 How do you implement a disconnected layer using a C# application?

•	 How do you use MySqlConnection, MySqlCommand, MySqlDataReader,

MySqlDataAdapter, and MySqlCommandBuilder in a program?

•	 What is a stored procedure? How is it different from a stored

function?

•	 How do you use stored procedures in your program?

Chapter 7 Database Programming

341
© Vaskaran Sarcar 2020
V. Sarcar, Getting Started with Advanced C#, https://doi.org/10.1007/978-1-4842-5934-4

�APPENDIX A

Installing MySQL
and Testing SQL
Commands
Here I present step-by-step instructions on how to install MySQL on a Windows 10

Home operating system (which I use on my laptop). The instructions were initially

written for MySQL community server 8.0.16, but later I upgraded to version 8.0.17. At

the time of writing, the most recent version is 8.0.19. Ideally, these steps should not vary

much in upcoming versions, but there is no guarantee. I recommend that you visit the

official MySQL website at https://dev.mysql.com/downloads/mysql/ prior to your

installation. On this page, you can also get the installer for other operating systems (for

example, Debian Linux, Ubuntu Linux, Fedora, macOS, Oracle Solaris, etc.).

I request you to note another minor point. All the MySQL installation steps (and

SQL commands execution steps) are clearly described using Figures A-1 to A-42. Except

Figure A-20, I didn’t extend these figure captions like: Figure A-1. Downloading MySQL

Community Server etc. For brevity, I kept only simple names like Figure A-1, Figure A-2

and so forth. These are easy to understand and proceed.

Note  The installation steps for different operating systems are also available at
https://dev.mysql.com/doc/refman/8.0/en/installing.html.

	 1.	 Download the latest MySQL Community server from the official

site at https://dev.mysql.com/downloads/mysql/. (In my case,

initially, it was 8.0.16, but later updated to 8.0.17.) You see a dialog

box similar to what’s shown in Figure A-1 .

https://doi.org/10.1007/978-1-4842-5934-4#ESM
https://dev.mysql.com/downloads/mysql/
https://dev.mysql.com/doc/refman/8.0/en/installing.html
https://dev.mysql.com/downloads/mysql/

342

	 2.	 Select your operating system (Microsoft Windows), and then click

Go to Download Page. You are redirected to the actual download

page for Windows MySQL Server.

	 3.	 You see two different installers. Choose the installer with the

larger size (i.e., mysql-installer-community-[latest version].msi),

as shown in Figure A-2.

Figure A-1.

Appendix A Installing MySQL and Testing SQL Commands

343

	 4.	 You are asked for the credentials. You can log in, sign up, or chose

the No thanks, just start my download option (as I did), as shown

in Figure A-3. The installer downloads the selected MySQL on the

local machine.

Figure A-2.

Appendix A Installing MySQL and Testing SQL Commands

344

	 5.	 Go to your downloads folder and locate the mysql-installer-

community file. Double-click the installer, as shown in Figure A-4.

(Or, you can right-click on that file and choose the Install option.)

Figure A-3.

Appendix A Installing MySQL and Testing SQL Commands

345

During the installation process, you may be asked for permission to change your

computer settings or firewall confirmation. Once you accept, the installation proceeds. It

may take time to configure the installer (see Figure A-5).

Figure A-4.

Figure A-5.

Appendix A Installing MySQL and Testing SQL Commands

346

	 6.	 Read the license agreement. To proceed further, you need to

accept the license terms. Then click Next, as shown in Figure A-6.

Figure A-6.

Appendix A Installing MySQL and Testing SQL Commands

347

Figure A-7.

	 7.	 From a list of various options, I chose Developer Default to serve

my needs, as shown in Figure A-7. Click Next.

Appendix A Installing MySQL and Testing SQL Commands

348

	 8.	 Note the Check Requirements dialog box. This depends on

the current configuration of your system. Click Next. (Before I

installed Visual Studio 2019 on my system, I saw what’s shown in

Figure A-8.)

Figure A-8.

Appendix A Installing MySQL and Testing SQL Commands

349

(Once I installed Visual Studio Community 2019 on my system, I saw what is shown

in Figure A-9.)

Figure A-9.

Appendix A Installing MySQL and Testing SQL Commands

350

	 9.	 Based on your current Windows configuration, you may be

prompted, “One or more product requirements have not been

satisfied,” as shown in Figure A-10. Click Yes and then Next.

Figure A-10.

Appendix A Installing MySQL and Testing SQL Commands

351

	 10.	 You see a screen similar to Figure A-11. (It depends on your

current configuration.) Click Execute.

Figure A-11.

Appendix A Installing MySQL and Testing SQL Commands

352

Now you see a dialog box similar to what’s shown in Figure A-12.

Figure A-12.

Appendix A Installing MySQL and Testing SQL Commands

353

	 11.	 Once everything is installed, you see the dialog box shown in

Figure A-13. Click Next.

Figure A-13.

Appendix A Installing MySQL and Testing SQL Commands

354

	 12.	 MySQL suggests configuration of the server settings, as shown in

Figure A-14. Click Next.

Figure A-14.

Appendix A Installing MySQL and Testing SQL Commands

355

	 13.	 In Figure A-15, I opted for the default settings (Standalone
MySQL server/Classic MySQL replication) because I’ll use it

only for my development, and I do not need a cluster. Click Next.

Figure A-15.

Appendix A Installing MySQL and Testing SQL Commands

356

	 14.	 Keep everything as the default (i.e., I chose Development

Computer.) Although you can choose other options, per your

needs (see Figure A-16). Click Next.

Figure A-16.

Appendix A Installing MySQL and Testing SQL Commands

357

	 15.	 Choose the default recommended method, and then click Next, as

shown in Figure A-17.

Figure A-17.

Appendix A Installing MySQL and Testing SQL Commands

358

	 16.	 Set the MySQL root user password, and then click Next, as shown

in Figure A-18.

Figure A-18.

Appendix A Installing MySQL and Testing SQL Commands

359

	 17.	 For now, I am not creating any new user, but you can always create

a new user and set the role. In that case, you need to click the Add
User button to get a dialog box like the one shown in Figure A-19.

Provide the required information.

Figure A-19.

Appendix A Installing MySQL and Testing SQL Commands

360

	 18.	 Keep all the default settings, and click Next, as shown in

Figure A-20.

Figure A-20.  Note the MySQL80 service name. Recall that I used version 8.0.16

Appendix A Installing MySQL and Testing SQL Commands

361

	 19.	 Click Execute to apply the configurations from the previous step,

as shown in Figure A-21.

Figure A-21.

Appendix A Installing MySQL and Testing SQL Commands

362

Upon execution, you see a dialog box similar to the one shown in Figure A-22.

Figure A-22.

Appendix A Installing MySQL and Testing SQL Commands

363

	 20.	 Once everything is installed, you see the dialog box shown in

Figure A-23. Click Finish.

Figure A-23.

Appendix A Installing MySQL and Testing SQL Commands

364

	 21.	 You see the dialog box shown in Figure A-24. Click Next.

Figure A-24.

Appendix A Installing MySQL and Testing SQL Commands

365

	 22.	 You do not need to set up the router information for now. Click

Finish, as shown in Figure A-25.

Figure A-25.

Appendix A Installing MySQL and Testing SQL Commands

366

	 23.	 Note that since you did not provide any settings, “Configuration

not needed” appears for MySQL Router 8.0.16, as shown in

Figure A-26. Click Next.

Figure A-26.

Appendix A Installing MySQL and Testing SQL Commands

367

	 24.	 Supply a password for the root user, as shown in Figure A-27.

Figure A-27.

Appendix A Installing MySQL and Testing SQL Commands

368

	 25.	 Click the Check button, and then click Next, as shown in

Figure A-28.

Figure A-28.

Appendix A Installing MySQL and Testing SQL Commands

369

	 26.	 The dialog box shown in Figure A-29 appears. Click Execute.

Figure A-29.

Appendix A Installing MySQL and Testing SQL Commands

370

	 27.	 Once everything is applied, you see the dialog box shown in

Figure A-30. Click Finish.

Figure A-30.

Appendix A Installing MySQL and Testing SQL Commands

371

	 28.	 The dialog box shown in Figure A-31 appears. Click Next.

Figure A-31.

Appendix A Installing MySQL and Testing SQL Commands

372

	 29.	 You see an Installation Complete message, as shown in Figure A-32.

Click Finish.

Figure A-32.

Both the MySQL Workbench and MySQL Shell prompts open because they were

selected in the previous step (see Figures A-33 and A-34).

Appendix A Installing MySQL and Testing SQL Commands

373

Figure A-34.

Figure A-33.

Appendix A Installing MySQL and Testing SQL Commands

374

�Upgrade Scenario
Prior to writing the Chapter 7, I upgraded the software to 8.0.18. This section features

some important screenshots to help you understand an upgrade scenario.

When I upgraded to 8.0.18, I saw an increased file size (compare it with Figure A-2),

as shown in Figure A-35.

Figure A-35.

Appendix A Installing MySQL and Testing SQL Commands

375

In an upgrade scenario, you may see the dialog box shown in Figure A-36 (compare

with Figure A-13).

Figure A-36.

Appendix A Installing MySQL and Testing SQL Commands

376

Once everything is set up, you may see the dialog box shown in Figure A-37.

�Testing the Installation and Executing Simple SQL
Statements
Here are some sample SQL queries/statements for your reference. These statements

were exercised with a MySQL database using the Command prompt.

Enter password: ∗∗∗∗∗
Welcome to the MySQL monitor. Commands end with ; or \g.

Your MySQL connection id is 8

Server version: 8.0.16 MySQL Community Server - GPL

Copyright (c) 2000, 2019, Oracle and/or its affiliates. All rights reserved.

Figure A-37.

Appendix A Installing MySQL and Testing SQL Commands

377

Oracle is a registered trademark of Oracle Corporation and/or its affiliates. Other

names may be trademarks of their respective owners.

Type 'help;' or '\h' for help. Type '\c' to clear the current input statement.

mysql> show databases;

+--------------------+

| Database |

+--------------------+

| information_schema |

| mysql |

| performance_schema |

| sakila |

| sys |

| world |

+--------------------+

6 rows in set (0.30 sec)

[Creating a custom database called test]

mysql> create database test;

Query OK, 1 row affected (0.23 sec)

[Showing all the currently available database(s)]

mysql> show databases;

+--------------------+

| Database |

+--------------------+

| information_schema |

| mysql |

| performance_schema |

| sakila |

| sys |

| test |

| world |

+--------------------+

7 rows in set (0.00 sec)

[We'll do all our experiment in test database. So, I'm moving into it.]

Appendix A Installing MySQL and Testing SQL Commands

378

mysql> use test;

Database changed

[Creating a table called employee in the database. This table is used in

the examples of chapter7]

mysql> create table employee(EmpId Integer primary key,Name Varchar(10),Age

Integer not null,Salary Double);

Query OK, 0 rows affected (1.06 sec)

[Inserting the records into the employee table in test database.]

mysql> insert into employee values(1,'Amit',25,1200.5);

Query OK, 1 row affected (0.31 sec)

mysql> insert into employee values(2,'Sam',23,1000.25);

Query OK, 1 row affected (0.22 sec)

mysql> insert into employee values(3,'Bob',30,1500);

Query OK, 1 row affected (0.14 sec)

[Fetching all records from employee table in the database]

mysql> select * from employee;

+-------+------+-----+---------+

| EmpId | Name | Age | Salary |

+-------+------+-----+---------+

| 1 | Amit | 25 | 1200.5 |

| 2 | Sam | 23 | 1000.25 |

| 3 | Bob | 30 | 1500 |

+-------+------+-----+---------+

3 rows in set (0.00 sec)

Figure A-38 is a screenshot in a compact view.

Appendix A Installing MySQL and Testing SQL Commands

379

[Checking the structure of employee table in the database]

mysql> desc employee;

+--------+-------------+------+-----+---------+-------+

| Field | Type | Null | Key | Default | Extra |

+--------+-------------+------+-----+---------+-------+

| EmpId | int(11) | NO | PRI | NULL | |

| Name | varchar(10) | YES | | NULL | |

| Age | int(11) | NO | | NULL | |

| Salary | double | YES | | NULL | |

+--------+-------------+------+-----+---------+-------+

4 rows in set (0.17 sec)

Figure A-39 is a screenshot in a compact view.

Figure A-39.

Figure A-38.

Appendix A Installing MySQL and Testing SQL Commands

380

[Creating another table called NumberTable in the database. Note that

this table is not used in the examples of chapter7]

mysql> create table NumberTable(FirstNo Double, SecondNo Double);

Query OK, 0 rows affected (2.77 sec)

mysql> show tables;

+----------------+

| Tables_in_test |

+----------------+

| employee |

| numbertable |

+----------------+

2 rows in set (0.08 sec)

[Inserting the records into the table called numbertable in test database.]

mysql> insert into numbertable values(12.3,15.7);

Query OK, 1 row affected (2.12 sec)

mysql> insert into numbertable values(32.3,25.3);

Query OK, 1 row affected (0.13 sec)

mysql> insert into numbertable values(25,75);

Query OK, 1 row affected (0.08 sec)

[Fetching all records from numbertable table in test database]

mysql> select ∗ from numbertable;
+---------+----------+

| FirstNo | SecondNo |

+---------+----------+

| 12.3 | 15.7 |

| 32.3 | 25.3 |

| 25 | 75 |

+---------+----------+

3 rows in set (0.08 sec)

[Creating a function called AddNumbers in the current database]

Appendix A Installing MySQL and Testing SQL Commands

381

mysql> create function AddNumbers(firstNumber double,secondNumber double)

returns double deterministic return firstNumber+secondNumber;

Query OK, 0 rows affected (0.45 sec)

[Checking the status of the function AddNumbers in the current database]

mysql> show function status where db='test';

+------+------------+----------+----------------+---------------------+---

------------------+---------------+---------+----------------------+-----

-----------------+--------------------+

| Db | Name | Type | Definer | Modified |

Created | Security_type | Comment | character_set_client |

collation_connection | Database Collation |

+------+------------+----------+----------------+---------------------+--

-------------------+---------------+---------+----------------------+-----

-----------------+--------------------+

| test | AddNumbers | FUNCTION | root@localhost | 2020-03-17 10:13:20 |

2020-03-17 10:13:20 | DEFINER | | cp850 |

cp850_general_ci | utf8mb4_0900_ai_ci |

| test | total | FUNCTION | root@localhost | 2019-09-02 19:41:28 |

2019-09-02 19:41:28 | DEFINER | | cp850 |

cp850_general_ci | utf8mb4_0900_ai_ci |

+------+------------+----------+----------------+---------------------+---

------------------+---------------+---------+----------------------+-----

-----------------+--------------------+

2 rows in set (0.11 sec)

mysql> Select Routine_name as "Function Name", routine_Definition as

"Definition", Routine_Schema "Schema", Data_Type as "Types", Created

From Information_Schema.Routines Where Routine_Name='AddNumbers' and

Routine_Type= 'FUNCTION';

Appendix A Installing MySQL and Testing SQL Commands

382

+---------------+---------------------------------+--------+--------+------

---------------+

| Function Name | Definition | Schema | Types |

CREATED |

+---------------+---------------------------------+--------+--------+------

---------------+

| AddNumbers | return firstNumber+secondNumber | test | double | 2020-

03-17 10:13:20 |

+---------------+---------------------------------+--------+--------+------

---------------+

1 row in set (0.00 sec)

Figure A-40 offers a compact view.

[Invoking the AddNumbers function with two arguments (25 and 45) in the

current database]

mysql> select AddNumbers (25,45);

+-------------------+

| AddNumbers(25,45) |

+-------------------+

| 70 |

+-------------------+

Figure A-40.

Appendix A Installing MySQL and Testing SQL Commands

383

1 row in set (0.21 sec)

[Invoking the AddNumbers function with two arguments (25 and 45) in the

current database and setting the column name(which is holding the result of

the function) as "Total"]

mysql> select AddNumbers(25,45) as "Total";

+-------+

| Total |

+-------+

| 70 |

+-------+

1 row in set (0.00 sec)

[Creating another table called employee_backup from exiting table employee]

mysql> create table employee_backup

 -> as (select * from employee);

Query OK, 3 rows affected (1.99 sec)

Records: 3 Duplicates: 0 Warnings: 0

Note.

The prior command copies the table with data, but it does not copy other database
objects, such as primary keys, foreign keys, indexes, and so forth. To copy data
and all the dependent objects from an existing table, you can use the following
two commands. (I assume that you are creating an employee table by copying
employee_backup. I also check whether a table already exists before creating it.)

create table if not exists employee like employee_backup;

insert employee select * from employee_backup;

[Fetching all records from employee_backup table in test database]

Appendix A Installing MySQL and Testing SQL Commands

384

mysql> select ∗ from employee_backup;
+-------+------+-----+---------+

| EmpId | Name | Age | Salary |

+-------+------+-----+---------+

| 1 | Amit | 25 | 1200.5 |

| 2 | Sam | 23 | 1000.25 |

| 3 | Bob | 30 | 1500 |

+-------+------+-----+---------+

3 rows in set (0.00 sec)

[Checking the structure of employee_backup table in the database]

mysql> desc employee_backup;

+--------+-------------+------+-----+---------+-------+

| Field | Type | Null | Key | Default | Extra |

+--------+-------------+------+-----+---------+-------+

| EmpId | int(11) | NO | | NULL | |

| Name | varchar(10) | YES | | NULL | |

| Age | int(11) | NO | | NULL | |

| Salary | double | YES | | NULL | |

+--------+-------------+------+-----+---------+-------+

4 rows in set (0.01 sec)

[Creating the procedure 'GetAllEmployees' in the current database]

mysql> DELIMITER $

mysql> CREATE PROCEDURE GetAllEmployees()

 -> BEGIN

 -> SELECT ∗ FROM EMPLOYEE;
 -> END $

Query OK, 0 rows affected (0.30 sec)

mysql>

mysql> DELIMITER ;

[Creating the procedure 'InsertOneNewRecord' in the current database]

Appendix A Installing MySQL and Testing SQL Commands

385

mysql> DELIMITER $

mysql> CREATE PROCEDURE InsertOneNewRecord()

 -> BEGIN

 -> insert into Employee values(4,'John',27,975);

 -> END $

Query OK, 0 rows affected (0.47 sec)

[Creating the procedure 'DeleteOneRecord' in the current database]

mysql> DELIMITER //

mysql> CREATE PROCEDURE DeleteOneRecord(

 -> IN NameToBeDeleted varchar(10)

 ->)

 -> BEGIN

 -> Delete from employee where Name=NameToBeDeleted;

 -> END //

Query OK, 0 rows affected (0.23 sec)

mysql> DELIMITER ;

[To display all procedures in current database]

mysql> show procedure status where db='test';

Figure A-41 is a partial screenshot in a compact view.

Figure A-41.

Appendix A Installing MySQL and Testing SQL Commands

386

[Dropping a procedure from database 'test']

mysql> drop procedure if exists DeleteOneRecord;

After dropping the procedure, Figure A-42 shows a partial screenshot in a compact

view.

Figure A-42.

Appendix A Installing MySQL and Testing SQL Commands

387
© Vaskaran Sarcar 2020
V. Sarcar, Getting Started with Advanced C#, https://doi.org/10.1007/978-1-4842-5934-4

�APPENDIX B

Recommended Reading
I recommend that you read the following books(or, the updated editions).

•	 C# 7.0 in a Nutshell by Joseph Albahari and Ben Albahari(O’Reilly, 2018).

•	 Professional C# 4.0 and .NET 4 by Christian Nagel, Bill Evjen, Jay

Glynn, Karli Watson, and Morgan Skinner (Wrox, 2010).

•	 Design Patterns in C# by Vaskaran Sarcar (Apress, 2018).

•	 The C# Player’s Guide by R. B. Whitaker (Starbound Software, 2015).

•	 C#4.0 : The Complete Reference by Herbert Schildt (McGraw-Hill

Education, 2010).

You can also visit the following online resources/websites to get useful
information on C#.

•	 https://docs.microsoft.com/en-us/dotnet/csharp/

•	 https://devblogs.microsoft.com/csharpfaq/

•	 www.c-sharpcorner.com

•	 www.codeproject.com

•	 www.artima.com/intv/generics.html

•	 https://docs.microsoft.com/en-us/dotnet/standard/

asynchronous-programming-patterns/

•	 www.c-sharpcorner.com

•	 www.csharp-station.com

•	 https://csharp.2000things.com

•	 www.tutorialsteacher.com/csharp/csharp-tutorials

•	 https://en.wikipedia.org/wiki/C_Sharp_(programming_language)

https://doi.org/10.1007/978-1-4842-5934-4#ESM
https://docs.microsoft.com/en-us/dotnet/csharp/
https://devblogs.microsoft.com/csharpfaq/
http://www.c-sharpcorner.com
http://www.codeproject.com
https://www.artima.com/intv/generics.html
https://docs.microsoft.com/en-us/dotnet/standard/asynchronous-programming-patterns/
https://docs.microsoft.com/en-us/dotnet/standard/asynchronous-programming-patterns/
http://www.c-sharpcorner.com
http://www.csharp-station.com
https://csharp.2000things.com
http://www.tutorialsteacher.com/csharp/csharp-tutorials
https://en.wikipedia.org/wiki/C_Sharp_(programming_language)

389
© Vaskaran Sarcar 2020
V. Sarcar, Getting Started with Advanced C#, https://doi.org/10.1007/978-1-4842-5934-4

Index

A
Abort() method, 196
Abstract event, 61
Action delegate, 117
Action<T> delegate, 136
ActiveX Data Objects (ADO), 290
ADO.NET, 283

disconnected data architecture, 290
object-oriented framework, 290
System.Data, 312
traditional connection-oriented

services, 290
Anonymous method, 71, 74, 98
Array, 135
Assignment compatibility, 137
async and await keywords, 270–281
AsyncCallback delegate, 242
AsyncCompletedEventHandler, 251
Asynchronous callback, 242–246
Asynchronous programming

EAP (see Event-based asynchronous
pattern (EAP))

IAsyncResult pattern (see IAsyncResult
pattern)

lambda expressions, 229–232
synchronous approach, 219, 220
TAP (see Task-based asynchronous

pattern (TAP))
tasks, 258–262
thread class, 220–222

ThreadPool class (see ThreadPool class)
Asynchrony, 217
AsyncWaitHandle property, 238–242

B
BaseClass<T>, 149
BeginInvoke method, 242
BeginInvoke method’s return type, 234
Boxing, 111, 114

C
Callback method, 246, 247
Candidate keys, 337
Child thread, 195
Close() method, 297, 338
CloseDatabaseConnection() method, 302
Command objects, 292
Communication deadlock, 208
Compile-time error, 98
Composite keys, 337
ConcreteSender, 61
Connection object, 292
Connection-oriented model

connecting and retrieving details,
demonstration, 299–303, 305–312

DeleteRecordFromEmployee
Table(), 303

InsertNewRecordInto
EmployeeTable(), 303

https://doi.org/10.1007/978-1-4842-5934-4#ESM

390

Main(), 298
mySqlConnection class, 298
Open() and Close() methods, 298, 299
UpdateExistingRecordInto

EmployeeTable() method, 303, 304
Connection pooling, 337, 338
Constraint, 312
Context switching, 166
ContinueWith() method, 280
Contravariance, 24, 135

delegates, 28–30
generic delegate, 144–147
generic interface, 147–153

Covariance, 25
delegates, 25–27
with generic delegate, 138–141
with generic interface, 141–144
interfaces and delegates, 135
type conversion, 135

Custom events, creation, 39–42

D
DataAdapter objects, 292
Database, 284
Database management system (DBMS),

284, 285
Database Programming

ADO.NET, 284
classes and interfaces, 291
connection-oriented architecture

(see Connection-oriented model)
Disconnected data architecture (see

Disconnected data architecture,
implementation)

MySqlCommand, 294, 295
mySqlConnection, 293, 294

MySqlDataReader, 296, 297
objects, types, 292
stored procedures (see Stored

procedures)
DataColumn, 312
Data control language (DCL), 336
Data definition language (DDL), 336
Data manipulation language (DML), 336
DataReader object, 290, 292
DataRelation, 312
DataRow, 312
DataSet classes, 312
DataSet object, 291
DataTable, 312
DbCommand, 295
DbDataAdapter, 315
Deadlock

deadlocked state in Visual Studio,
211–213

demo program, 209–211
myFirstLock and mySecondLock, 208
types, 208

Default keyword, 122–125
Default values, 122
Delegates

code segment, 5–7
contravariance, 28–30
covariance, 25–27
declarations, 5
definition, 5
DelegateWithTwoInt

ParameterReturnInt, 4
event handling and callback

methods, 22
IL code, 8
Main method, 9
MulticastDelegate class, 8
public constructor, 22

Connection-oriented model (cont.)

Index

391

return type, 4
static and non-static methods, 10
static methods and instance

methods, 11–14
Sum method, 4
System.Delegate class, 3
type-safety, 3
variance, 24, 25

DelegateWithTwoIntParameter
ReturnInt, 4

DeleteOneRecord, 325
DeleteRecordFromEmployeeTable()

method, 303, 304
DeleteRecordIntoEmployeeTable, 316
Delimiter, 336
DerivedClass<T>, 149
Disconnected data architecture,

implementation
ADO.NET, benefit, 333
code segment, 316, 317
DataRow, 312
DataSet classes, 312
DataTable, 312
DeleteRecordIntoEmployeeTable, 316
demonstration, 317–323
DisplayRecordsFromEmployee

Table, 316
InsertRecordIntoEmployeeTable, 316
MySqlCommandBuilder, 315, 316
MySqlDataAdapter, 313–315

Disconnected layer, 312
Display method, 108
DisplayDouble method, 109
DisplayMyDouble method, 106
DisplayMyInteger, 104
DisplayMyString, 104
DisplayRecordsFromEmployeeTable()

method, 299, 303, 316

Downcasting, 111
DownloadFileAsync, 250

E
EndInvoke method, 235
Entity Framework (EF), 283
Event accessors, 46–52
Event argument, 43–46
Event-based asynchronous

pattern (EAP), 218
characteristics, 249
code segment, 255
program demo, 254–258
pros and cons, 257
UI application, 255, 257

EventHandler delegate, 35
Events

argument, 43–46
characteristics, 33, 34
custom, creation, 39–42
declaration, 34
delegate declaration, 35
demo program, 35–38
handling mechanism, 65, 67
interface method, 53–55
modifier, 34
UnRelatedMethod, 38

ExecuteMethod1 ()
method, 275

ExecuteNonQuery () method, 326
ExecuteReader() method, 295
ExecuteReader() method, 295
Explicit interface events

ConcreteSender,
implementation, 62–64

IBeforeInterface and IAfterInterface,
demo program, 56–60

Index

392

Expression, 95
Expression-bodied method, 78–85
Expression lambda, 96

F
Fill()) method, 314, 334
FillSchema(), 314, 334
Foreground thread vs. background

thread, 196–199
Foreign keys, 337
Framework, 283
Func delegate, 114–116, 137

G
Generic classes, 106, 107
Generic constraints, 129–133
Generic contravariant interface, 148
Generic delegate

contravariance, 144–147
covariance, 138–141

Generic interface, 125–128
contravariance, 147–153
covariance, 141–144

GenericMethod (T param), 125
Generics, 103, 162

action delegate, 117
advantages, 103
ArrayList class, 110, 111
constraints, 129–133
default keyword, 122–125
Func delegate, 114–116
generic interfaces,

implementation, 125–128
List class, 112–114
NonGenericEx, 104, 105
predicate delegate, 118–121

program, 107–109
restrictions, 161
runtime error InvalidCastException, 111
static data, 159

Generic type parameters, 151
GetNotificationFromSender, 35, 91
GetNotificationItself method, 39, 61, 91
GetOneBus(), 138
GetOneVehicle(), 138

H
Handling interface events, 53–55

I
IAfterInterface, 55
IAsyncCallback delegate, 242
IAsyncResult pattern, 218

asynchronous callback, 242–246, 248
AsyncWaitHandle property, 238–242
BeginInvoke method’s return type, 234
polling demo, 233–237
read-only properties, 234

IBeforeInterface, 55
IComparable<T>, 154
IComparer<T> interface, 137
IDataAdapter interface, 314
IDataReader interface, 296
IDataRecord interface, 297
IDbConnection interface, 294
IDbDataAdapter interface, 313
IEmployee interface, 130
IEnumerable<T> interface, 136, 141
IEquitable<T>, 154
IIdenticalEmployee<T>, 155
IMyInterface interface, 53
Inheritance hierarchy, 148

Index

393

InsertNewRecordIntoEmployeeTable(), 303
InsertOneNewRecord, 324
InsertRecordIntoEmployeeTable, 316
Installation, MySQL

add user button, 359
authentication method, 357
check requirements dialog box, 348,

350, 351
complete message, 372
configurations, applying, 361–364,

369, 370
connect to server, 367, 368
default recommended method, 357
default settings, 355
developer default, 347
execution, 351, 353
high availability, 355
install option, 344
license agreement, read, 346
MySQL Community server,

download, 341, 343
MySQL root user password, set, 358
MySQL Workbench and MySQL Shell

prompts, 372
operating system, selection, 342
process, 345
product configuration, 364, 366, 371
product configuration, server

settings, 354
router configuration, 365
setup type, 347
type and networking, 356
upgrade scenario, 374–376
windows service, 360

Instance methods, 11–14
Invariance, 25
Invoke() method, 234
IRecord methods, 297

IsBackground property, 196, 197, 199
isCompleted property, 234

J
Join() method, 175–179

K
Key-value pairs, 298

L
Lambda expressions, 229–232, 246,

270, 271
anonymous method, 71
C# compiler, 72
event subscription, 91–94
local variables, 85–88
parameters, 76–78
restrictions, 97
sum of two integers, demo

program, 72–75
tuples, 88–91
types, 78
usefulness, 71

List class, 112–114, 141
Local variables, 85–88

M
Main() method, 175, 192, 219, 276
Max Pool Size, 338
Method group, 30
Min Pool Size, 338
Monitor class, 205, 206
Monitor’s Entry and Exit methods, 205
MulticastDelegate class, 10

Index

394

Multicast delegates
exception handling, 19
MethodOne(), 19
methods with void return types, 17, 18
multiDel(), 14–16
multiDel(), 15
non-void return type, 19
runtime error, 20
static and instance methods, 14
Sum method, overloaded versions, 20, 21
System.MulticastDelegate, 14

Multiple generic type parameters, 107
Multithreaded environment, 166
Multithreaded program, 165
Multithreaded programs in C#

constructors, 167
Method1(), 167
ParameterizedThreadStart delegate, 167
Thread class, 167
ThreadStart delegate, 167

Mutex, 203
MyGenericClass<T> generic class, 159
MyInt property, 38, 42
MyIntChanged, 38
MyMethod(), 152, 259
MySqlCommand, 292, 294, 295
MySqlCommandBuilder, 315, 316
mySqlConnection, 292–294, 298
MySql.Data, 290
MySqlDataAdapter, 313–315
MySql.Data.MySqlClient, 291
MySqlDataReader, 292, 295–297

N
Naked type constraint, 130
Namespace, 291, 312
new() constraint, 133, 134

NonGenericMethod(), 125
Non-lambda method, 78
NuGet package, 291
NullReferenceException, 68

O
OnMyIntChanged method, 43

P
Parameter object, 292
ParameterizedThreadStart delegate, 167

boundaries class, 184
demo program, 183–189
lambda expressions, 190–192
Main() method, 192
Method4, 184
Name, Priority, and ManagedThreadId

properties, 193–195
Polling, 233
Predicate delegate, 118–121
Primary key, 336
Process vs. thread, 164
Publisher-subscriber model, 33
Pulse(), 206
PulseAll(), 206

Q
QueueUserWorkItem method, 224, 225

R
Read() methods, 297
Receiver class object, 35
Record, 284
Relational algebra, 286

Index

395

Relational DBMS (RDBMS), 285, 286
Resource deadlock, 208

S
Self-referencing generic types, 154–162
Sender class object, 35
SharedMethod(), 200
SharedResource, 200
ShowBusType(), 144
ShowMe(), 141, 144
ShowVehicleType(), 144
Sleep() method, 175, 178
SqlCommand, 292
SqlConnection, 292
SqlDataReader, 292
SQL queries/statements, 376–386
Start() method, 267
StartNew() method, 259, 261
Statement lambda, 78, 96
Static methods, 11–14
Stored procedures

characteristics, 323
definition, 334
DeleteOneRecord, 325
demonstration, 327–333
InsertOneNewRecord, 324
method names and operations, 327
select records, 324
SQL statements, 324
verification technique, 325, 326

Structured Query Language (SQL)
classification, 336
connector, 287, 288
MySql.Data, 289, 290
.NET connectors, 287–289
RDBMS language, 286

Synchronization deadlock, 203, 205, 208

Synchronous approach, 218–220
System.Data, 312

T
Task-based asynchronous pattern (TAP)

async and await keywords, 270–281
continuation work, 270
ContinueWith() method, 268
Method1() and Method2(),

implement, 262–269
Run() method, 267
Task class, 267
TaskContinuationOptions, 268
taskForMethod1, 268, 270

TaskContinuationOptions, 262
Tasks, 258–262
Thread class, 214
Thread class, 220–222
Thread.CurrentThread property, 192
Threaded environment, 166
ThreadPool class

compilation error, 225
demonstration, 226–229
lambda expressions, 229–232
method parameter, 225
overloaded version, 224, 225
QueueUserWorkItem method, 225
static class, 223
Visual Studio 2019 IDE, 224
WaitCallBack, 225

Thread priorities, 193
ThreadPriority enumeration, 193
Thread programming

constructors, 214
deadlock (see Deadlock))
foreground thread vs. background

thread, 196–199

Index

396

methods, 215
multiple flows of control, 164
processor execution time, 164
properties, 214

Thread safety
non-synchronized

version, 200–203
synchronized version, 203–205

ThreadStart delegate, 167
demo program, 170–174
Join() method, demo, 178–182
Method1, 168
Thread constructor, 169
thread states, 169
void return type, 168

Transaction control language (TCL), 336
TryEnter method, 207

Tuples, 88–91
Turing machine, 95
Type inference, 75
Type-safe function pointers, 3
Type-safety, 3

U, V
Unboxing, 114
UnRelatedMethod, 38
UpdateExistingRecordInto

EmployeeTable() method, 303, 304
User-defined event accessors, 52

W, X, Y, Z
Wait() method, 206
WaitOne() method, 239

Thread programming (cont.)

Index

	Table of Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Foreword
	Introduction
	Part I: Getting Familiar with Building Blocks
	Chapter 1: Delegates
	Definition
	Demonstration 1
	Output
	Analysis

	Q&A Session

	Comparing a Static Method with an Instance Method
	Demonstration 2
	Output

	Using Multicast Delegates
	Demonstration 3
	Output
	Analysis

	Q&A Session
	Demonstration 4
	Output
	Analysis

	Q&A Session
	Demonstration 5
	Output
	Analysis

	Q&A Session

	Variance in Delegates
	Covariance in Delegates
	Demonstration 6
	Output
	Analysis

	Contravariance in Delegates
	Demonstration 7
	Output
	Analysis

	Q&A Session

	Final Words
	Summary

	Chapter 2: Events
	Demonstration 1
	Output
	Analysis

	Q&A Session
	Creating Custom Events
	Demonstration 2
	Output
	Analysis

	Passing Data to an Event Argument
	Demonstration 3
	Output

	Using Event Accessors
	Demonstration 4
	Output
	Analysis

	Q&A Session

	Handling Interface Events
	Demonstration 5
	Output

	Q&A Session

	Handling Explicit Interface Events
	Demonstration 6
	Output

	Q&A Session
	Demonstration 7
	Output

	Q&A Session
	Demonstration 8
	Output

	Final Words
	Summary

	Chapter 3: Lambda Expressions
	The Usefulness of Lambda Expressions
	Demonstration 1
	Output
	Analysis

	Lambda Expression with (and Without) Parameters
	Demonstration 2
	Output

	Types of Lambda Expressions
	Expression-Bodied Members
	Demonstration 3
	Output

	Demonstration 4
	Output

	Local Variables in a Lambda Expression
	Demonstration 5
	Output

	Using Tuples in a Lambda Expression
	Demonstration 6
	Output

	Event Subscription with Lambda Expressions
	Demonstration 7
	Output

	Q&A Session

	Final Words
	Summary

	Part II: Exploring Advanced Programming
	Chapter 4: Generic Programming
	The Motivation Behind Generics
	Demonstration 1
	Output
	Analysis

	Demonstration 2
	Output
	Analysis

	Demonstration 3
	Output
	Analysis

	A Quick Look into the List Class
	Demonstration 4
	Output
	Analysis

	Generic Delegates
	Func Delegate
	Q&A Session
	Action Delegate
	Predicate Delegate
	Demonstration 5
	Output

	Q&A Session

	The Default Keyword in Generics
	Demonstration 6
	Output

	Q&A Session

	Implementing Generic Interface
	Demonstration 7
	Output
	Analysis

	Q&A Session

	Generic Constraints
	Demonstration 8
	Output

	Q&A Session

	Using Covariance and Contravariance
	Q&A Session

	Covariance with Generic Delegate
	Demonstration 9
	Output

	Covariance with Generic Interfaces
	Demonstration 10
	Output

	Contravariance with Generic Delegates
	Demonstration 11
	Output

	Contravariance with Generic Interface
	Partial Implementation
	Q&A Session
	Demonstration 12
	Output
	Analysis

	Q&A Session
	Demonstration 13
	Output

	Self-Referencing Generic Types
	Demonstration 14
	Output
	Analysis

	Q&A Session
	Demonstration 15
	Output

	Q&A Session

	Final Words
	Summary

	Chapter 5: Thread Programming
	Foundations in Thread Programming
	Q&A Session

	Coding Multithreaded Programs in C#
	Using the ThreadStart Delegate
	Demonstration 1
	Output
	Analysis

	Demonstration 2
	Output
	Analysis

	Q&A Session

	Using the ParameterizedThreadStart Delegate
	Demonstration 3
	Output
	Analysis

	Q&A Session
	Demonstration 4
	Output
	Analysis

	Q&A Session
	Demonstration 5
	Output

	Q&A Session
	Demonstration 6
	Output
	Analysis

	Q&A Session

	Foreground Thread vs. Background Thread
	Demonstration 7
	Output
	Additional Note

	Thread Safety
	A Non-Synchronized Version
	Demonstration 8
	Output

	A Synchronized Version
	Demonstration 9
	Output

	An Alternative Approach Using the Monitor Class
	Deadlock
	Types of Deadlock
	Demonstration 10
	Output

	Investigating the Deadlocked State in Visual Studio

	Final Words
	Summary

	Chapter 6: Asynchronous Programming
	Overview
	Using a Synchronous Approach
	Demonstration 1
	Output

	Using Thread Class
	Demonstration 2
	Output
	Analysis

	Q&A Session

	Using the ThreadPool Class
	Demonstration 3
	Output

	Q&A Session

	Using Lambda Expressions with ThreadPool
	Demonstration 4
	Output

	Using the IAsyncResult Pattern
	Polling Using Asynchronous Delegates
	Demonstration 5
	Output

	Q&A Session
	Using the AsyncWaitHandle Property of IAsyncResult
	Demonstration 6
	Output
	Analysis

	Using Asynchronous Callback
	Demonstration 7
	Output
	Analysis

	Q&A Session

	Using an Event-based Asynchronous Pattern (EAP)
	Demonstration 8
	Output
	Analysis
	Additional Note
	Output

	Q&A Session

	Understanding Tasks
	Demonstration 9
	Output
	Q&A Session

	Using a Task-based Asynchronous Pattern (TAP)
	Demonstration 10
	Output

	Demonstration 11
	Output
	Analysis

	Q&A Session
	Using the async and await Keywords
	Demonstration 12
	Output
	Analysis

	Demonstration 13
	Output
	Analysis

	Final Words
	Summary

	Chapter 7: Database Programming
	Database and DBMS
	Types of DBMS
	RDBMS
	SQL

	A Brief Discussion of ADO.NET
	Understanding the Code
	MySqlConnection
	MySqlCommand
	MySqlDataReader

	Implementing Connection-Oriented Architecture
	Demonstration 1
	Output
	Analysis

	Demonstration 2
	Output

	Implementing Disconnected Data Architecture
	MySqlDataAdapter
	MySqlCommandBuilder
	Demonstration 3
	Output

	Programming with Stored Procedures
	Stored Procedure to Select Records
	Stored Procedure to Insert One Record
	Stored Procedure to Delete One Record
	One Simple Verification
	Demonstration 4
	Output

	Q&A Session

	Connection Pooling
	Final Words
	Summary

	Appendix A: Installing MySQL and Testing SQL Commands
	Upgrade Scenario
	Testing the Installation and Executing Simple SQL Statements

	Appendix B: Recommended Reading
	Index

